Beurling-Gevrey tempered ultradistributions as boundary values
Pilipovic, Stevan (1991)
Portugaliae mathematica
Similarity:
Pilipovic, Stevan (1991)
Portugaliae mathematica
Similarity:
R. S. Pathak, S. K. Upadhyay (1997)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Jacek Zienkiewicz (1994)
Studia Mathematica
Similarity:
Miloš Ráb (1969)
Časopis pro pěstování matematiky
Similarity:
Davide Guidetti (1990)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Paolo Acquistapace, Brunello Terreni (1987)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Sunao Ouchi (1983)
Annales de l'institut Fourier
Similarity:
Let be a linear partial differential operator with holomorphic coefficients, where and We consider Cauchy problem with holomorphic data We can easily get a formal solution , bu in general it diverges. We show under some conditions that for any sector with the opening less that a constant determined by , there is a function holomorphic except on such that and as in .