Displaying similar documents to “A curious property of oscillatory FEM solutions of one-dimensional convection-diffusion problems”

A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations

Gabriel R. Barrenechea, Volker John, Petr Knobloch (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

An extension of the local projection stabilization (LPS) finite element method for convection-diffusion-reaction equations is presented and analyzed, both in the steady-state and the transient setting. In addition to the standard LPS method, a nonlinear crosswind diffusion term is introduced that accounts for the reduction of spurious oscillations. The existence of a solution can be proved and, depending on the choice of the stabilization parameter, also its uniqueness. Error estimates...

On the Origin of Chaos in the Belousov-Zhabotinsky Reaction in Closed and Unstirred Reactors

M. A. Budroni, M. Rustici, E. Tiezzi (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

We investigate the origin of deterministic chaos in the Belousov–Zhabotinsky (BZ) reaction carried out in closed and unstirred reactors (CURs). In detail, we develop a model on the idea that hydrodynamic instabilities play a driving role in the transition to chaotic dynamics. A set of partial differential equations were derived by coupling the two variable Oregonator–diffusion system to the Navier–Stokes equations. This approach allows us to shed light on the correlation between chemical...

Some remarks concerning stabilization techniques for convection--diffusion problems

Brandner, Marek, Knobloch, Petr

Similarity:

There are many methods and approaches to solving convection--diffusion problems. For those who want to solve such problems the situation is very confusing and it is very difficult to choose the right method. The aim of this short overview is to provide basic guidelines and to mention the common features of different methods. We place particular emphasis on the concept of linear and non-linear stabilization and its implementation within different approaches.