Displaying similar documents to “Changing of the domination number of a graph: edge multisubdivision and edge removal”

On transitive orientations of G-ê

Michael Andresen (2009)

Discussiones Mathematicae Graph Theory

Similarity:

A comparability graph is a graph whose edges can be oriented transitively. Given a comparability graph G = (V,E) and an arbitrary edge ê∈ E we explore the question whether the graph G-ê, obtained by removing the undirected edge ê, is a comparability graph as well. We define a new substructure of implication classes and present a complete mathematical characterization of all those edges.

Effect of edge-subdivision on vertex-domination in a graph

Amitava Bhattacharya, Gurusamy Rengasamy Vijayakumar (2002)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a graph with Δ(G) > 1. It can be shown that the domination number of the graph obtained from G by subdividing every edge exactly once is more than that of G. So, let ξ(G) be the least number of edges such that subdividing each of these edges exactly once results in a graph whose domination number is more than that of G. The parameter ξ(G) is called the subdivision number of G. This notion has been introduced by S. Arumugam and S. Velammal. They have conjectured that for any...

Deficiency of forests

Sana Javed, Mujtaba Hussain, Ayesha Riasat, Salma Kanwal, Mariam Imtiaz, M. O. Ahmad (2017)

Open Mathematics

Similarity:

An edge-magic total labeling of an (n,m)-graph G = (V,E) is a one to one map λ from V(G) ∪ E(G) onto the integers {1,2,…,n + m} with the property that there exists an integer constant c such that λ(x) + λ(y) + λ(xy) = c for any xy ∈ E(G). It is called super edge-magic total labeling if λ (V(G)) = {1,2,…,n}. Furthermore, if G has no super edge-magic total labeling, then the minimum number of vertices added to G to have a super edge-magic total labeling, called super edge-magic deficiency...

The edge domination problem

Shiow-Fen Hwang, Gerard J. Chang (1995)

Discussiones Mathematicae Graph Theory

Similarity:

An edge dominating set of a graph is a set D of edges such that every edge not in D is adjacent to at least one edge in D. In this paper we present a linear time algorithm for finding a minimum edge dominating set of a block graph.

The edge C₄ graph of some graph classes

Manju K. Menon, A. Vijayakumar (2010)

Discussiones Mathematicae Graph Theory

Similarity:

The edge C₄ graph of a graph G, E₄(G) is a graph whose vertices are the edges of G and two vertices in E₄(G) are adjacent if the corresponding edges in G are either incident or are opposite edges of some C₄. In this paper, we show that there exist infinitely many pairs of non isomorphic graphs whose edge C₄ graphs are isomorphic. We study the relationship between the diameter, radius and domination number of G and those of E₄(G). It is shown that for any graph G without isolated vertices,...

Signed Roman Edgek-Domination in Graphs

Leila Asgharsharghi, Seyed Mahmoud Sheikholeslami, Lutz Volkmann (2017)

Discussiones Mathematicae Graph Theory

Similarity:

Let k ≥ 1 be an integer, and G = (V, E) be a finite and simple graph. The closed neighborhood NG[e] of an edge e in a graph G is the set consisting of e and all edges having a common end-vertex with e. A signed Roman edge k-dominating function (SREkDF) on a graph G is a function f : E → {−1, 1, 2} satisfying the conditions that (i) for every edge e of G, ∑x∈NG[e] f(x) ≥ k and (ii) every edge e for which f(e) = −1 is adjacent to at least one edge e′ for which f(e′) = 2. The minimum of...