Displaying similar documents to “Singularities of plane complex curves and limits of Kähler metrics with cone singularities. I: Tangent Cones”

Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields

Frédéric Campana, Henri Guenancia, Mihai Păun (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

We prove the existence of non-positively curved Kähler-Einstein metrics with cone singularities along a given simple normal crossing divisor of a compact Kähler manifold, under a technical condition on the cone angles, and we also discuss the case of positively-curved Kähler-Einstein metrics with cone singularities. As an application we extend to this setting classical results of Lichnerowicz and Kobayashi on the parallelism and vanishing of appropriate holomorphic tensor fields. ...

An extension theorem for Kähler currents with analytic singularities

Tristan C. Collins, Valentino Tosatti (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We prove an extension theorem for Kähler currents with analytic singularities in a Kähler class on a complex submanifold of a compact Kähler manifold.

Kähler-Einstein metrics: Old and New

Daniele Angella, Cristiano Spotti (2017)

Complex Manifolds

Similarity:

We present classical and recent results on Kähler-Einstein metrics on compact complex manifolds, focusing on existence, obstructions and relations to algebraic geometric notions of stability (K-stability). These are the notes for the SMI course "Kähler-Einstein metrics" given by C.S. in Cortona (Italy), May 2017. The material is not intended to be original.

Toric extremal Kähler-Ricci solitons are Kähler-Einstein

Simone Calamai, David Petrecca (2017)

Complex Manifolds

Similarity:

In this short note, we prove that a Calabi extremal Kähler-Ricci soliton on a compact toric Kähler manifold is Einstein. This settles for the class of toric manifolds a general problem stated by the authors that they solved only under some curvature assumptions.