Displaying similar documents to “Computing the Metric Dimension of a Graph from Primary Subgraphs”

On the strong metric dimension of the strong products of graphs

Dorota Kuziak, Ismael G. Yero, Juan A. Rodríguez-Velázquez (2015)

Open Mathematics

Similarity:

Let G be a connected graph. A vertex w ∈ V.G/ strongly resolves two vertices u,v ∈ V.G/ if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set S of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong resolving set for G is called the strong metric dimension of G. It is well known that the problem of computing this invariant is NP-hard. In this...

Closed Formulae for the Strong Metric Dimension of Lexicographi

Dorota Kuziak, Ismael G. Yero, Juan A. Rodríguez-Velázquez (2016)

Discussiones Mathematicae Graph Theory

Similarity:

Given a connected graph G, a vertex w ∈ V (G) strongly resolves two vertices u, v ∈ V (G) if there exists some shortest u − w path containing v or some shortest v − w path containing u. A set S of vertices is a strong metric generator for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong metric generator for G is called the strong metric dimension of G. In this paper we obtain several relationships between the strong metric...

A metric for graphs

Vladimír Baláž, Jaroslav Koča, Vladimír Kvasnička, Milan Sekanina (1986)

Časopis pro pěstování matematiky

Similarity:

Stability of graphs.

Demir, Bünyamin, Deniz, Ali, Koçak, Sahin (2009)

The Electronic Journal of Combinatorics [electronic only]

Similarity: