Displaying similar documents to “On the arrowhead-Fibonacci numbers”

Determinants and inverses of circulant matrices with complex Fibonacci numbers

Ercan Altınışık, N. Feyza Yalçın, Şerife Büyükköse (2015)

Special Matrices

Similarity:

Let ℱn = circ (︀F*1 , F*2, . . . , F*n︀ be the n×n circulant matrix associated with complex Fibonacci numbers F*1, F*2, . . . , F*n. In the present paper we calculate the determinant of ℱn in terms of complex Fibonacci numbers. Furthermore, we show that ℱn is invertible and obtain the entries of the inverse of ℱn in terms of complex Fibonacci numbers.

An inequality for Fibonacci numbers

Horst Alzer, Florian Luca (2022)

Mathematica Bohemica

Similarity:

We extend an inequality for Fibonacci numbers published by P. G. Popescu and J. L. Díaz-Barrero in 2006.

Gelin-Cesáro identities for Fibonacci and Lucas quaternions

Ahmet Daşdemir (2019)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

To date, many identities of different quaternions, including the Fibonacci and Lucas quaternions, have been investigated. In this study, we present Gelin-Cesáro identities for Fibonacci and Lucas quaternions. The identities are a worthy addition to the literature. Moreover, we give Catalan's identity for the Lucas quaternions.

The k-Fibonacci matrix and the Pascal matrix

Sergio Falcon (2011)

Open Mathematics

Similarity:

We define the k-Fibonacci matrix as an extension of the classical Fibonacci matrix and relationed with the k-Fibonacci numbers. Then we give two factorizations of the Pascal matrix involving the k-Fibonacci matrix and two new matrices, L and R. As a consequence we find some combinatorial formulas involving the k-Fibonacci numbers.

Explicit formulas for the constituent matrices. Application to the matrix functions

R. Ben Taher, M. Rachidi (2015)

Special Matrices

Similarity:

We present a constructive procedure for establishing explicit formulas of the constituents matrices. Our approach is based on the tools and techniques from the theory of generalized Fibonacci sequences. Some connections with other results are supplied. Furthermore,we manage to provide tractable expressions for the matrix functions, and for illustration purposes we establish compact formulas for both the matrix logarithm and the matrix pth root. Some examples are also provided. ...

Binomials transformation formulae for scaled Fibonacci numbers

Edyta Hetmaniok, Bożena Piątek, Roman Wituła (2017)

Open Mathematics

Similarity:

The aim of the paper is to present the binomial transformation formulae of Fibonacci numbers scaled by complex multipliers. Many of these new and nontrivial relations follow from the fundamental properties of the so-called delta-Fibonacci numbers defined by Wituła and Słota. The paper contains some original relations connecting the values of delta-Fibonacci numbers with the respective values of Chebyshev polynomials of the first and second kind.

On terms of linear recurrence sequences with only one distinct block of digits

Diego Marques, Alain Togbé (2011)

Colloquium Mathematicae

Similarity:

In 2000, Florian Luca proved that F₁₀ = 55 and L₅ = 11 are the largest numbers with only one distinct digit in the Fibonacci and Lucas sequences, respectively. In this paper, we find terms of a linear recurrence sequence with only one block of digits in its expansion in base g ≥ 2. As an application, we generalize Luca's result by finding the Fibonacci and Lucas numbers with only one distinct block of digits of length up to 10 in its decimal expansion.