The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Binomials transformation formulae for scaled Fibonacci numbers”

An inequality for Fibonacci numbers

Horst Alzer, Florian Luca (2022)

Mathematica Bohemica

Similarity:

We extend an inequality for Fibonacci numbers published by P. G. Popescu and J. L. Díaz-Barrero in 2006.

Gelin-Cesáro identities for Fibonacci and Lucas quaternions

Ahmet Daşdemir (2019)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

To date, many identities of different quaternions, including the Fibonacci and Lucas quaternions, have been investigated. In this study, we present Gelin-Cesáro identities for Fibonacci and Lucas quaternions. The identities are a worthy addition to the literature. Moreover, we give Catalan's identity for the Lucas quaternions.

On Balancing and Lucas-balancing Quaternions

Bijan Kumar Patel, Prasanta Kumar Ray (2021)

Communications in Mathematics

Similarity:

The aim of this article is to investigate two new classes of quaternions, namely, balancing and Lucas-balancing quaternions that are based on balancing and Lucas-balancing numbers, respectively. Further, some identities including Binet's formulas, summation formulas, Catalan's identity, etc. concerning these quaternions are also established.

On useful schema in survival analysis after heart attack

Czesław Stępniak (2014)

Discussiones Mathematicae Probability and Statistics

Similarity:

Recent model of lifetime after a heart attack involves some integer coefficients. Our goal is to get these coefficients in simple way and transparent form. To this aim we construct a schema according to a rule which combines the ideas used in the Pascal triangle and the generalized Fibonacci and Lucas numbers

The positivity problem for fourth order linear recurrence sequences is decidable

Pinthira Tangsupphathawat, Narong Punnim, Vichian Laohakosol (2012)

Colloquium Mathematicae

Similarity:

The problem whether each element of a sequence satisfying a fourth order linear recurrence with integer coefficients is nonnegative, referred to as the Positivity Problem for fourth order linear recurrence sequence, is shown to be decidable.

On terms of linear recurrence sequences with only one distinct block of digits

Diego Marques, Alain Togbé (2011)

Colloquium Mathematicae

Similarity:

In 2000, Florian Luca proved that F₁₀ = 55 and L₅ = 11 are the largest numbers with only one distinct digit in the Fibonacci and Lucas sequences, respectively. In this paper, we find terms of a linear recurrence sequence with only one block of digits in its expansion in base g ≥ 2. As an application, we generalize Luca's result by finding the Fibonacci and Lucas numbers with only one distinct block of digits of length up to 10 in its decimal expansion.