The nucleus of the free alternative algebra.
Hentzel, I.R., Peresi, L.A. (2006)
Experimental Mathematics
Similarity:
Hentzel, I.R., Peresi, L.A. (2006)
Experimental Mathematics
Similarity:
A. J. Kfoury (1988)
Banach Center Publications
Similarity:
K.A. Brandt, H. Terao (1994)
Discrete & computational geometry
Similarity:
R. Z. Buzyakova, A. Chigogidze (2011)
Fundamenta Mathematicae
Similarity:
Our main result states that every fixed-point free continuous self-map of ℝⁿ is colorable. This result can be reformulated as follows: A continuous map f: ℝⁿ → ℝⁿ is fixed-point free iff f̃: βℝⁿ → βℝⁿ is fixed-point free. We also obtain a generalization of this fact and present some examples
Caro, Yair (1990)
International Journal of Mathematics and Mathematical Sciences
Similarity:
A. Kumar, P. K. Pathak (1976)
Colloquium Mathematicae
Similarity:
Jean Berstel (1985)
Publications du Département de mathématiques (Lyon)
Similarity:
Paul H. Edelman, Victor Reiner (1994)
Mathematische Zeitschrift
Similarity:
B. Tilson (1972)
Semigroup forum
Similarity:
Đuro Kurepa (1987)
Publications de l'Institut Mathématique
Similarity:
Ladislav Nebeský (1984)
Časopis pro pěstování matematiky
Similarity:
Karl Dilcher, Lutz G. Lucht (2006)
Acta Arithmetica
Similarity:
Xavier Ros-Oton, Joaquim Serra (2019)
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana
Similarity:
Free boundary problems are those described by PDEs that exhibit a priori unknown (free) interfacesor boundaries. The most classical example is the melting of ice to water (the Stefan problem). In this case, the freeboundary is the liquid-solid interface between ice and water. A central mathematical challenge in this context is to understand the regularity and singularities of free boundaries. In this paper we provide a gentle introduction to this topic by presenting some classical results...