The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems”

Fast and guaranteed a posteriori error estimator

Vejchodský, Tomáš

Similarity:

The equilibrated residual method and the method of hypercircle are popular methods for a posteriori error estimation for linear elliptic problems. Both these methods are intended to produce guaranteed upper bounds of the energy norm of the error, but the equilibrated residual method is guaranteed only theoretically. The disadvantage of the hypercircle method is its globality, hence slowness. The combination of these two methods leads to local, hence fast, and guaranteed a posteriori...

Goal oriented a posteriori error estimates for the discontinuous Galerkin method

Dolejší, Vít, Roskovec, Filip

Similarity:

This paper is concerned with goal-oriented a posteriori error estimates for discontinous Galerkin discretizations of linear elliptic boundary value problems. Our approach combines the Dual Weighted Residual method (DWR) with local weighted least-squares reconstruction of the discrete solution. This technique is used not only for controlling the discretization error, but also to track the influence of the algebraic errors. We illustrate the performance of the proposed method by numerical...

Goal-oriented error estimates including algebraic errors in discontinuous Galerkin discretizations of linear boundary value problems

Vít Dolejší, Filip Roskovec (2017)

Applications of Mathematics

Similarity:

We deal with a posteriori error control of discontinuous Galerkin approximations for linear boundary value problems. The computational error is estimated in the framework of the Dual Weighted Residual method (DWR) for goal-oriented error estimation which requires to solve an additional (adjoint) problem. We focus on the control of the algebraic errors arising from iterative solutions of algebraic systems corresponding to both the primal and adjoint problems. Moreover, we present two...