Displaying similar documents to “Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions”

A boundary integral Poisson-Boltzmann solvers package for solvated bimolecular simulations

Weihua Geng (2015)

Molecular Based Mathematical Biology

Similarity:

Numerically solving the Poisson-Boltzmann equation is a challenging task due to the existence of the dielectric interface, singular partial charges representing the biomolecule, discontinuity of the electrostatic field, infinite simulation domains, etc. Boundary integral formulation of the Poisson-Boltzmann equation can circumvent these numerical challenges and meanwhile conveniently use the fast numerical algorithms and the latest high performance computers to achieve combined improvement...

Quantization of pencils with a gl-type Poisson center and braided geometry

Dimitri Gurevich, Pavel Saponov (2011)

Banach Center Publications

Similarity:

We consider Poisson pencils, each generated by a linear Poisson-Lie bracket and a quadratic Poisson bracket corresponding to a so-called Reflection Equation Algebra. We show that any bracket from such a Poisson pencil (and consequently, the whole pencil) can be restricted to any generic leaf of the Poisson-Lie bracket. We realize a quantization of these Poisson pencils (restricted or not) in the framework of braided affine geometry. Also, we introduce super-analogs of all these Poisson...

Stationary solutions of the generalized Smoluchowski-Poisson equation

Robert Stańczy (2008)

Banach Center Publications

Similarity:

The existence of steady states in the microcanonical case for a system describing the interaction of gravitationally attracting particles with a self-similar pressure term is proved. The system generalizes the Smoluchowski-Poisson equation. The presented theory covers the case of the model with diffusion that obeys the Fermi-Dirac statistic.

Computation of Biharmonic Poisson Kernel for the Upper Half Plane

Ali Abkar (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

We first consider the biharmonic Poisson kernel for the unit disk, and study the boundary behavior of potentials associated to this kernel function. We shall then use some properties of the biharmonic Poisson kernel for the unit disk to compute the analogous biharmonic Poisson kernel for the upper half plane.

A note on Poisson approximation by w-functions

M. Majsnerowska (1998)

Applicationes Mathematicae

Similarity:

One more method of Poisson approximation is presented and illustrated with examples concerning binomial, negative binomial and hypergeometric distributions.

A note on Poisson derivations

Jiantao Li (2018)

Czechoslovak Mathematical Journal

Similarity:

Free Poisson algebras are very closely connected with polynomial algebras, and the Poisson brackets are used to solve many problems in affine algebraic geometry. In this note, we study Poisson derivations on the symplectic Poisson algebra, and give a connection between the Jacobian conjecture with derivations on the symplectic Poisson algebra.

Approximation by Poisson law

Aldona Aleškevičienė, Vytautas Statulevičius (2005)

Discussiones Mathematicae Probability and Statistics

Similarity:

We present here the results of the investigation on approximation by the Poisson law of distributions of sums of random variables in the scheme of series. We give the results pertaining to the behaviour of large deviation probabilities and asymptotic expansions, to the method of cumulants, with the aid of which our results have been obtained.