Displaying similar documents to “Corrigendum to: Dual-stage adaptive finite-time modified function projective multi-lag combined synchronization for multiple uncertain chaotic systems”

Chaos synchronization of TSUCS unified chaotic system, a modified function projective control method

Hamed Tirandaz (2018)

Kybernetika

Similarity:

The synchronization problem of the three-scroll unified chaotic system (TSUCS) is studied in this paper. A modified function projective synchronization (MFPS) method is developed to achieve this goal. Furthermore, the only parameter of the TSUCS unified chaotic system is considered unknown and estimated with an appropriate parameter estimation law. MFPS method is investigated for both identical and non-identical chaotic systems. Lyapunov stability theorem is utilized to verify the proposed...

Dual-stage adaptive finite-time modified function projective multi-lag combined synchronization for multiple uncertain chaotic systems

Qiaoping Li, Sanyang Liu (2017)

Open Mathematics

Similarity:

In this paper, for multiple different chaotic systems with unknown bounded disturbances and fully unknown parameters, a more general synchronization method called modified function projective multi-lag combined synchronization is proposed. This new method covers almost all of the synchronization methods available. As an advantage of the new method, the drive system is a linear combination of multiple chaotic systems, which makes the signal hidden channels more abundant and the signal...

Homography in ℝℙ

Roland Coghetto (2016)

Formalized Mathematics

Similarity:

The real projective plane has been formalized in Isabelle/HOL by Timothy Makarios [13] and in Coq by Nicolas Magaud, Julien Narboux and Pascal Schreck [12]. Some definitions on the real projective spaces were introduced early in the Mizar Mathematical Library by Wojciech Leonczuk [9], Krzysztof Prazmowski [10] and by Wojciech Skaba [18]. In this article, we check with the Mizar system [4], some properties on the determinants and the Grassmann-Plücker relation in rank 3 [2], [1], [7],...

Pascal’s Theorem in Real Projective Plane

Roland Coghetto (2017)

Formalized Mathematics

Similarity:

In this article we check, with the Mizar system [2], Pascal’s theorem in the real projective plane (in projective geometry Pascal’s theorem is also known as the Hexagrammum Mysticum Theorem)1. Pappus’ theorem is a special case of a degenerate conic of two lines. For proving Pascal’s theorem, we use the techniques developed in the section “Projective Proofs of Pappus’ Theorem” in the chapter “Pappus’ Theorem: Nine proofs and three variations” [11]. We also follow some ideas from Harrison’s...

Combinatorial Grassmannians

Andrzej Owsiejczuk (2007)

Formalized Mathematics

Similarity:

In the paper I construct the configuration G which is a partial linear space. It consists of k-element subsets of some base set as points and (k + 1)-element subsets as lines. The incidence is given by inclusion. I also introduce automorphisms of partial linear spaces and show that automorphisms of G are generated by permutations of the base set.

Projective spaces of second order.

Andrzej Miernowski, Witold Mozgawa (1997)

Collectanea Mathematica

Similarity:

Grassmannians of higher order appeared for the first time in a paper of A. Szybiak in the context of the Cartan method of moving frame. In the present paper we consider a special case of higher order Grassmannian, the projective space of second order. We introduce the projective group of second order acting on this space, derive its Maurer-Cartan equations and show that our generalized projective space is a homogeneous space of this group.