Displaying similar documents to “On Double-Star Decomposition of Graphs”

On Decomposing Regular Graphs Into Isomorphic Double-Stars

Saad I. El-Zanati, Marie Ermete, James Hasty, Michael J. Plantholt, Shailesh Tipnis (2015)

Discussiones Mathematicae Graph Theory

Similarity:

A double-star is a tree with exactly two vertices of degree greater than 1. If T is a double-star where the two vertices of degree greater than one have degrees k1+1 and k2+1, then T is denoted by Sk1,k2 . In this note, we show that every double-star with n edges decomposes every 2n-regular graph. We also show that the double-star Sk,k−1 decomposes every 2k-regular graph that contains a perfect matching.

Supermagic Graphs Having a Saturated Vertex

Jaroslav Ivančo, Tatiana Polláková (2014)

Discussiones Mathematicae Graph Theory

Similarity:

A graph is called supermagic if it admits a labeling of the edges by pairwise different consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we establish some conditions for graphs with a saturated vertex to be supermagic. Inter alia we show that complete multipartite graphs K1,n,n and K1,2,...,2 are supermagic.

On magic joins of graphs

Jaroslav Ivančo, Tatiana Polláková (2012)

Mathematica Bohemica

Similarity:

A graph is called magic (supermagic) if it admits a labeling of the edges by pairwise different (and consecutive) integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we characterize magic joins of graphs and we establish some conditions for magic joins of graphs to be supermagic.