Displaying similar documents to “κ-strong sequences and the existence of generalized independent families”

Borel Tukey morphisms and combinatorial cardinal invariants of the continuum

Samuel Coskey, Tamás Mátrai, Juris Steprāns (2013)

Fundamenta Mathematicae

Similarity:

We discuss the Borel Tukey ordering on cardinal invariants of the continuum. We observe that this ordering makes sense for a larger class of cardinals than has previously been considered. We then provide a Borel version of a large portion of van Douwen's diagram. For instance, although the usual proof of the inequality 𝔭 ≤ 𝔟 does not provide a Borel Tukey map, we show that in fact there is one. Afterwards, we revisit a result of Mildenberger concerning a generalization of the unsplitting...

A generic theorem in cardinal function inequalities

Alejandro Ramírez-Páramo (2008)

Colloquium Mathematicae

Similarity:

We establish a general technical result, which provides an algorithm to prove cardinal inequalities and relative versions of cardinal inequalities.

Indestructibility, strongness, and level by level equivalence

Arthur W. Apter (2003)

Fundamenta Mathematicae

Similarity:

We construct a model in which there is a strong cardinal κ whose strongness is indestructible under κ-strategically closed forcing and in which level by level equivalence between strong compactness and supercompactness holds non-trivially.

Some Remarks on Tall Cardinals and Failures of GCH

Arthur W. Apter (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We investigate two global GCH patterns which are consistent with the existence of a tall cardinal, and also present some related open questions.

Equimorphism invariants for scattered linear orderings

Antonio Montalbán (2006)

Fundamenta Mathematicae

Similarity:

Two linear orderings are equimorphic if they can be embedded in each other. We define invariants for scattered linear orderings which classify them up to equimorphism. Essentially, these invariants are finite sequences of finite trees with ordinal labels. Also, for each ordinal α, we explicitly describe the finite set of minimal scattered equimorphism types of Hausdorff rank α. We compute the invariants of each of these minimal types..

Some applications of Sargsyan's equiconsistency method

Arthur W. Apter (2012)

Fundamenta Mathematicae

Similarity:

We apply techniques due to Sargsyan to reduce the consistency strength of the assumptions used to establish an indestructibility theorem for supercompactness. We then show how these and additional techniques due to Sargsyan may be employed to establish an equiconsistency for a related indestructibility theorem for strongness.

Strong sequences and partition relations

Joanna Jureczko (2017)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

The first result in partition relations topic belongs to Ramsey (1930). Since that this topic has been still explored. Probably the most famous partition theorem is Erdös-Rado theorem (1956). On the other hand in 60’s of the last century Efimov introduced strong sequences method, which was used for proving some famous theorems in dyadic spaces. The aim of this paper is to generalize theorem on strong sequences and to show that it is equivalent to generalized version of well-known Erdös-Rado...

On the correlation of families of pseudorandom sequences of k symbols

Kit-Ho Mak, Alexandru Zaharescu (2016)

Acta Arithmetica

Similarity:

In an earlier paper Gyarmati introduced the notion of f-correlation for families of binary pseudorandom sequences as a measure of randomness in the family. In this paper we generalize the f-correlation to families of pseudorandom sequences of k symbols and study its properties.

HOD-supercompactness, Indestructibility, and Level by Level Equivalence

Arthur W. Apter, Shoshana Friedman (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

In an attempt to extend the property of being supercompact but not HOD-supercompact to a proper class of indestructibly supercompact cardinals, a theorem is discovered about a proper class of indestructibly supercompact cardinals which reveals a surprising incompatibility. However, it is still possible to force to get a model in which the property of being supercompact but not HOD-supercompact holds for the least supercompact cardinal κ₀, κ₀ is indestructibly supercompact, the strongly...

Almost disjoint families and “never” cardinal invariants

Charles Morgan, Samuel Gomes da Silva (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We define two cardinal invariants of the continuum which arise naturally from combinatorially and topologically appealing properties of almost disjoint families of sets of the natural numbers. These are the never soft and never countably paracompact numbers. We show that these cardinals must both be equal to ω 1 under the effective weak diamond principle ( ω , ω , < ) , answering questions of da Silva S.G., On the presence of countable paracompactness, normality and property ( a ) in spaces from almost...

Universal Indestructibility is Consistent with Two Strongly Compact Cardinals

Arthur W. Apter (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We show that universal indestructibility for both strong compactness and supercompactness is consistent with the existence of two strongly compact cardinals. This is in contrast to the fact that if κ is supercompact and universal indestructibility for either strong compactness or supercompactness holds, then no cardinal λ > κ is measurable.

Indestructible Strong Compactness and Level by Level Equivalence with No Large Cardinal Restrictions

Arthur W. Apter (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We construct a model for the level by level equivalence between strong compactness and supercompactness with an arbitrary large cardinal structure in which the least supercompact cardinal κ has its strong compactness indestructible under κ-directed closed forcing. This is in analogy to and generalizes the author's result in Arch. Math. Logic 46 (2007), but without the restriction that no cardinal is supercompact up to an inaccessible cardinal.

More Easton theorems for level by level equivalence

Arthur W. Apter (2012)

Colloquium Mathematicae

Similarity:

We establish two new Easton theorems for the least supercompact cardinal that are consistent with the level by level equivalence between strong compactness and supercompactness. These theorems generalize Theorem 1 in our earlier paper [Math. Logic Quart. 51 (2005)]. In both our ground model and the model witnessing the conclusions of our present theorems, there are no restrictions on the structure of the class of supercompact cardinals.

Finite type invariants for cyclic equivalence classes of nanophrases

Yuka Kotorii (2014)

Fundamenta Mathematicae

Similarity:

We define finite type invariants for cyclic equivalence classes of nanophrases and construct universal invariants. Also, we identify the universal finite type invariant of degree 1 essentially with the linking matrix. It is known that extended Arnold basic invariants to signed words are finite type invariants of degree 2, by Fujiwara's work. We give another proof of this result and show that those invariants do not provide the universal one of degree 2.