The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces”

Hölder quasicontinuity of Sobolev functions on metric spaces.

Piotr Hajlasz, Juha Kinnunen (1998)

Revista Matemática Iberoamericana

Similarity:

We prove that every Sobolev function defined on a metric space coincides with a Hölder continuous function outside a set of small Hausdorff content or capacity. Moreover, the Hölder continuous function can be chosen so that it approximates the given function in the Sobolev norm. This is a generalization of a result of Malý [Ma1] to the Sobolev spaces on metric spaces [H1].

Variable Sobolev capacity and the assumptions on the exponent

Petteri Harjulehto, Peter Hästö, Mika Koskenoja, Susanna Varonen (2005)

Banach Center Publications

Similarity:

In a recent article the authors showed that it is possible to define a Sobolev capacity in variable exponent Sobolev space. However, this set function was shown to be a Choquet capacity only under certain assumptions on the variable exponent. In this article we relax these assumptions.

An embedding theorem for Sobolev type functions with gradients in a Lorentz space

Alireza Ranjbar-Motlagh (2009)

Studia Mathematica

Similarity:

The purpose of this paper is to prove an embedding theorem for Sobolev type functions whose gradients are in a Lorentz space, in the framework of abstract metric-measure spaces. We then apply this theorem to prove absolute continuity and differentiability of such functions.

Brézis-Gallouët-Wainger type inequality for Besov-Morrey spaces

Yoshihiro Sawano (2010)

Studia Mathematica

Similarity:

The aim of the present paper is to obtain an inequality of Brézis-Gallouët-Wainger type for Besov-Morrey spaces. We investigate these spaces in a self-contained manner. Also, we verify that our result is sharp.

A look on some results about Camassa–Holm type equations

Igor Leite Freire (2021)

Communications in Mathematics

Similarity:

We present an overview of some contributions of the author regarding Camassa--Holm type equations. We show that an equation unifying both Camassa--Holm and Novikov equations can be derived using the invariance under certain suitable scaling, conservation of the Sobolev norm and existence of peakon solutions. Qualitative analysis of the two-peakon dynamics is given.

Dimension-invariant Sobolev imbeddings

Miroslav Krbec, Hans-Jürgen Schmeisser (2011)

Banach Center Publications

Similarity:

We survey recent dimension-invariant imbedding theorems for Sobolev spaces.

The Besov capacity in metric spaces

Juho Nuutinen (2016)

Annales Polonici Mathematici

Similarity:

We study a capacity theory based on a definition of Hajłasz-Besov functions. We prove several properties of this capacity in the general setting of a metric space equipped with a doubling measure. The main results of the paper are lower bound and upper bound estimates for the capacity in terms of a modified Netrusov-Hausdorff content. Important tools are γ-medians, for which we also prove a new version of a Poincaré type inequality.

Hessian determinants as elements of dual Sobolev spaces

Teresa Radice (2014)

Studia Mathematica

Similarity:

In this short note we present new integral formulas for the Hessian determinant. We use them for new definitions of Hessian under minimal regularity assumptions. The Hessian becomes a continuous linear functional on a Sobolev space.