Remarks on Baire theorem for H-closed spaces
J. Mioduszewski (1971)
Colloquium Mathematicae
Similarity:
J. Mioduszewski (1971)
Colloquium Mathematicae
Similarity:
P. Dierolf, S. Dierolf, L. Drewnowski (1978)
Colloquium Mathematicae
Similarity:
E. Torrance (1938)
Fundamenta Mathematicae
Similarity:
Hejduk, Jacek (2015-11-10T11:42:31Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
R. C. Haworth, R. A McCoy
Similarity:
CONTENTSIntroduction............................................................................................................ 5I. Basic properties of Baire spaces................................................................... 61. Nowhere dense sets............................................................................................... 62. First and second category sets............................................................................. 83. Baire spaces................................................................................................................
Jerzy Kąkol (1986)
Mathematica Slovaca
Similarity:
Miller, Harry I. (1981)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
W. Fleissner, K. Kunen (1978)
Fundamenta Mathematicae
Similarity:
Ewert, Janina (1994)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Jerzy Kakol (2000)
Revista Matemática Complutense
Similarity:
We characterize Baire-like spaces C(X,E) of continuous functions defined on a locally compact and Hewitt space X into a locally convex space E endowed with the compact-open topology.
T. W. Körner (2003)
Studia Mathematica
Similarity:
We construct various Besicovitch sets using Baire category arguments.
Mercourakis, S., Stamati, E. (2002)
Serdica Mathematical Journal
Similarity:
For a polish space M and a Banach space E let B1 (M, E) be the space of first Baire class functions from M to E, endowed with the pointwise weak topology. We study the compact subsets of B1 (M, E) and show that the fundamental results proved by Rosenthal, Bourgain, Fremlin, Talagrand and Godefroy, in case E = R, also hold true in the general case. For instance: a subset of B1 (M, E) is compact iff it is sequentially (resp. countably) compact, the convex hull of a compact bounded subset...