Displaying similar documents to “On the numerical solution of implicit two-point boundary-value problems”

On the Newton-Kantorovich theorem and nonlinear finite element methods

Ioannis K. Argyros (2009)

Applicationes Mathematicae

Similarity:

Using a weaker version of the Newton-Kantorovich theorem, we provide a discretization result to find finite element solutions of elliptic boundary value problems. Our hypotheses are weaker and under the same computational cost lead to finer estimates on the distances involved and a more precise information on the location of the solution than before.

Newton's iteration with a conjugate gradient based decomposition method for an elliptic PDE with a nonlinear boundary condition

Jonas Koko (2004)

International Journal of Applied Mathematics and Computer Science

Similarity:

Newton's iteration is studied for the numerical solution of an elliptic PDE with nonlinear boundary conditions. At each iteration of Newton's method, a conjugate gradient based decomposition method is applied to the matrix of the linearized system. The decomposition is such that all the remaining linear systems have the same constant matrix. Numerical results confirm the savings with respect to the computational cost, compared with the classical Newton method with factorization at each...

Discrete evolutions: Convergence and applications

Erich Bohl, Johannes Schropp (1993)

Applications of Mathematics

Similarity:

We prove a convergence result for a time discrete process of the form x ( t + h ) - x ( t ) = h V ( h , x ( t + α 1 ( t ) h ) , . . . , x ( t + α L ( t ) h ) ) t = T + j h , j = 0 , . . . , σ ( h ) - 1 under weak conditions on the function V . This result is a slight generalization of the convergence result given in [5].Furthermore, we discuss applications to minimizing problems, boundary value problems and systems of nonlinear equations.