Discrete evolutions: Convergence and applications

Erich Bohl; Johannes Schropp

Applications of Mathematics (1993)

  • Volume: 38, Issue: 4-5, page 266-280
  • ISSN: 0862-7940

Abstract

top
We prove a convergence result for a time discrete process of the form x ( t + h ) - x ( t ) = h V ( h , x ( t + α 1 ( t ) h ) , . . . , x ( t + α L ( t ) h ) ) t = T + j h , j = 0 , . . . , σ ( h ) - 1 under weak conditions on the function V . This result is a slight generalization of the convergence result given in [5].Furthermore, we discuss applications to minimizing problems, boundary value problems and systems of nonlinear equations.

How to cite

top

Bohl, Erich, and Schropp, Johannes. "Discrete evolutions: Convergence and applications." Applications of Mathematics 38.4-5 (1993): 266-280. <http://eudml.org/doc/15754>.

@article{Bohl1993,
abstract = {We prove a convergence result for a time discrete process of the form $x(t+h)-x(t)=hV(h,x(t+\alpha _1(t)h), ..., x(t+\alpha _L(t)h)) t=T+jh, j=0, ..., \sigma (h)-1$ under weak conditions on the function $V$. This result is a slight generalization of the convergence result given in [5].Furthermore, we discuss applications to minimizing problems, boundary value problems and systems of nonlinear equations.},
author = {Bohl, Erich, Schropp, Johannes},
journal = {Applications of Mathematics},
keywords = {discrete processes; continuous processes; convergence of discretisations; boundary value problems; minimizing problems; Newton's iteration and Newton's flow; discrete evolutions; systems of nonlinear equations; discrete evolutions; convergence; time discrete process; systems of nonlinear equations},
language = {eng},
number = {4-5},
pages = {266-280},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Discrete evolutions: Convergence and applications},
url = {http://eudml.org/doc/15754},
volume = {38},
year = {1993},
}

TY - JOUR
AU - Bohl, Erich
AU - Schropp, Johannes
TI - Discrete evolutions: Convergence and applications
JO - Applications of Mathematics
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 4-5
SP - 266
EP - 280
AB - We prove a convergence result for a time discrete process of the form $x(t+h)-x(t)=hV(h,x(t+\alpha _1(t)h), ..., x(t+\alpha _L(t)h)) t=T+jh, j=0, ..., \sigma (h)-1$ under weak conditions on the function $V$. This result is a slight generalization of the convergence result given in [5].Furthermore, we discuss applications to minimizing problems, boundary value problems and systems of nonlinear equations.
LA - eng
KW - discrete processes; continuous processes; convergence of discretisations; boundary value problems; minimizing problems; Newton's iteration and Newton's flow; discrete evolutions; systems of nonlinear equations; discrete evolutions; convergence; time discrete process; systems of nonlinear equations
UR - http://eudml.org/doc/15754
ER -

References

top
  1. Boggs P. Т., 10.1137/0708071, SIAM J. Numer. Anal. 8 (1971), 767-785. (1971) Zbl0223.65047MR0297121DOI10.1137/0708071
  2. Bohl E., Finite Modelle gewöhnlicher Randwertaufgaben, Teubner Studienbücher, B.G. Teubner, 1981. (1981) Zbl0472.65070MR0633643
  3. Bohl E., Mathematische Grundlagen für die Modellierung biologischer Vorgänge, Springer Hochschultexte, Springer, 1987. (1987) Zbl0643.92001MR1032759
  4. Bohl E., Mathematik und Leben, Die Frage nach dem Leben, Serie Piper (Fischer, E.P., Mainzer, K., eds.), 1990, pp. 233-263. (1990) 
  5. Bohl E., On the convergence of time-discrete processes, to appear in ZAMM 1993. (1993) MR1302474
  6. Collet P., Eckmann J. P., Iterated Maps on the Interval as dynamical Systems, Progress in Physics, Vol. 1, Basel. Zbl0458.58002
  7. Dahlquist G., 10.7146/math.scand.a-10454, Math. Scand. 4 (1956), 33-53. (1956) Zbl0071.11803MR0080998DOI10.7146/math.scand.a-10454
  8. Dennis J. E., Schnabel R. B., Numerical Methods for Unconstrained Optimisation and Nonlinear Equations, Prentice-Hall Inc., Engelwood Cliffs, New Jersey, 1983. (1983) MR0702023
  9. Gill P. E., Murray W., Wright M. H., Practical Optimization, Academic Press, London, New York, 1981. (1981) Zbl0503.90062MR0634376
  10. Grigorieff R. D., Numerik gewöhnlicher Differentialgleichungen 1, 2, Teubner Studienbücher, B.C. Teubner, 1972. (1972) MR0468207
  11. Hairer E., Wanner G., Norsett P. S., Solving Ordinary Differential Equations I, Springer-Verlag, 1980. (1980) MR1439506
  12. May R., 10.1038/261459a0, Nature 261 (1976), 459-467. (1976) DOI10.1038/261459a0
  13. Michaelis L., Menten M. L., Die Kinetik der Invertinwirkung, Biochem. Z. 49(1913), 333-369. (1913) 
  14. Ortega J. M., Rheinboldt W. C., Iterative Solution of Nonlinear Equations in Several Variables, New York, San Francisco, London, 1970. (1970) Zbl0241.65046MR0273810
  15. Schropp J., Global dynamics of Newton's flow, in preparation. 
  16. Werner J., Numerische Mathematik I, Vieweg, Braunschweig/Wiesbaden, 1992. (1992) 
  17. Wissel C., Theoretische Ökologie, Springer, Berlin, Heidelberg, New York, 1989. (1989) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.