Discrete evolutions: Convergence and applications
Applications of Mathematics (1993)
- Volume: 38, Issue: 4-5, page 266-280
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBohl, Erich, and Schropp, Johannes. "Discrete evolutions: Convergence and applications." Applications of Mathematics 38.4-5 (1993): 266-280. <http://eudml.org/doc/15754>.
@article{Bohl1993,
abstract = {We prove a convergence result for a time discrete process of the form $x(t+h)-x(t)=hV(h,x(t+\alpha _1(t)h), ..., x(t+\alpha _L(t)h)) t=T+jh, j=0, ..., \sigma (h)-1$ under weak conditions on the function $V$. This result is a slight generalization of the convergence result given in [5].Furthermore, we discuss applications to minimizing problems, boundary value problems and systems of nonlinear equations.},
author = {Bohl, Erich, Schropp, Johannes},
journal = {Applications of Mathematics},
keywords = {discrete processes; continuous processes; convergence of discretisations; boundary value problems; minimizing problems; Newton's iteration and Newton's flow; discrete evolutions; systems of nonlinear equations; discrete evolutions; convergence; time discrete process; systems of nonlinear equations},
language = {eng},
number = {4-5},
pages = {266-280},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Discrete evolutions: Convergence and applications},
url = {http://eudml.org/doc/15754},
volume = {38},
year = {1993},
}
TY - JOUR
AU - Bohl, Erich
AU - Schropp, Johannes
TI - Discrete evolutions: Convergence and applications
JO - Applications of Mathematics
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 38
IS - 4-5
SP - 266
EP - 280
AB - We prove a convergence result for a time discrete process of the form $x(t+h)-x(t)=hV(h,x(t+\alpha _1(t)h), ..., x(t+\alpha _L(t)h)) t=T+jh, j=0, ..., \sigma (h)-1$ under weak conditions on the function $V$. This result is a slight generalization of the convergence result given in [5].Furthermore, we discuss applications to minimizing problems, boundary value problems and systems of nonlinear equations.
LA - eng
KW - discrete processes; continuous processes; convergence of discretisations; boundary value problems; minimizing problems; Newton's iteration and Newton's flow; discrete evolutions; systems of nonlinear equations; discrete evolutions; convergence; time discrete process; systems of nonlinear equations
UR - http://eudml.org/doc/15754
ER -
References
top- Boggs P. Т., 10.1137/0708071, SIAM J. Numer. Anal. 8 (1971), 767-785. (1971) Zbl0223.65047MR0297121DOI10.1137/0708071
- Bohl E., Finite Modelle gewöhnlicher Randwertaufgaben, Teubner Studienbücher, B.G. Teubner, 1981. (1981) Zbl0472.65070MR0633643
- Bohl E., Mathematische Grundlagen für die Modellierung biologischer Vorgänge, Springer Hochschultexte, Springer, 1987. (1987) Zbl0643.92001MR1032759
- Bohl E., Mathematik und Leben, Die Frage nach dem Leben, Serie Piper (Fischer, E.P., Mainzer, K., eds.), 1990, pp. 233-263. (1990)
- Bohl E., On the convergence of time-discrete processes, to appear in ZAMM 1993. (1993) MR1302474
- Collet P., Eckmann J. P., Iterated Maps on the Interval as dynamical Systems, Progress in Physics, Vol. 1, Basel. Zbl0458.58002
- Dahlquist G., 10.7146/math.scand.a-10454, Math. Scand. 4 (1956), 33-53. (1956) Zbl0071.11803MR0080998DOI10.7146/math.scand.a-10454
- Dennis J. E., Schnabel R. B., Numerical Methods for Unconstrained Optimisation and Nonlinear Equations, Prentice-Hall Inc., Engelwood Cliffs, New Jersey, 1983. (1983) MR0702023
- Gill P. E., Murray W., Wright M. H., Practical Optimization, Academic Press, London, New York, 1981. (1981) Zbl0503.90062MR0634376
- Grigorieff R. D., Numerik gewöhnlicher Differentialgleichungen 1, 2, Teubner Studienbücher, B.C. Teubner, 1972. (1972) MR0468207
- Hairer E., Wanner G., Norsett P. S., Solving Ordinary Differential Equations I, Springer-Verlag, 1980. (1980) MR1439506
- May R., 10.1038/261459a0, Nature 261 (1976), 459-467. (1976) DOI10.1038/261459a0
- Michaelis L., Menten M. L., Die Kinetik der Invertinwirkung, Biochem. Z. 49(1913), 333-369. (1913)
- Ortega J. M., Rheinboldt W. C., Iterative Solution of Nonlinear Equations in Several Variables, New York, San Francisco, London, 1970. (1970) Zbl0241.65046MR0273810
- Schropp J., Global dynamics of Newton's flow, in preparation.
- Werner J., Numerische Mathematik I, Vieweg, Braunschweig/Wiesbaden, 1992. (1992)
- Wissel C., Theoretische Ökologie, Springer, Berlin, Heidelberg, New York, 1989. (1989)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.