On G-foliations
Robert Wolak (1985)
Annales Polonici Mathematici
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Robert Wolak (1985)
Annales Polonici Mathematici
Similarity:
Carlo Petronio (1999)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Rufus Bowen (1975)
Publications mathématiques et informatique de Rennes
Similarity:
Elmar Vogt (1989)
Publications Mathématiques de l'IHÉS
Similarity:
Robert A. Wolak (1989)
Publicacions Matemàtiques
Similarity:
In this short note we find some conditions which ensure that a G foliation of finite type with all leaves compact is a Riemannian foliation of equivalently the space of leaves of such a foliation is a Satake manifold. A particular attention is paid to transversaly affine foliations. We present several conditions which ensure completeness of such foliations.
Atsushi Sato, Itiro Tamura (1981)
Publications Mathématiques de l'IHÉS
Similarity:
Hanna Matuszczyk (1988)
Annales Polonici Mathematici
Similarity:
Vogt, Elmar (2002)
Algebraic & Geometric Topology
Similarity:
Kenneth Millett (1987)
Fundamenta Mathematicae
Similarity:
Richard Sacksteder (1964)
Annales de l'institut Fourier
Similarity:
Richard Sacksteder, Art J. Schwartz (1965)
Annales de l'institut Fourier
Similarity:
Soit une variété munie d’une structure feuilletée de co-dimension un. On démontre plusieurs théorème relatifs à des conditions entraînant que le groupe d’holonomie et le pseudo-groupe d’holonomie d’une certaine feuille est infini.