On transverse foliations

Atsushi Sato; Itiro Tamura

Publications Mathématiques de l'IHÉS (1981)

  • Volume: 54, page 5-35
  • ISSN: 0073-8301

How to cite

top

Sato, Atsushi, and Tamura, Itiro. "On transverse foliations." Publications Mathématiques de l'IHÉS 54 (1981): 5-35. <http://eudml.org/doc/103979>.

@article{Sato1981,
author = {Sato, Atsushi, Tamura, Itiro},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {existence and classification of transverse foliations; foliations arising from fibered knots; codimension-one foliations transverse to the Reeb foliation},
language = {eng},
pages = {5-35},
publisher = {Institut des Hautes Études Scientifiques},
title = {On transverse foliations},
url = {http://eudml.org/doc/103979},
volume = {54},
year = {1981},
}

TY - JOUR
AU - Sato, Atsushi
AU - Tamura, Itiro
TI - On transverse foliations
JO - Publications Mathématiques de l'IHÉS
PY - 1981
PB - Institut des Hautes Études Scientifiques
VL - 54
SP - 5
EP - 35
LA - eng
KW - existence and classification of transverse foliations; foliations arising from fibered knots; codimension-one foliations transverse to the Reeb foliation
UR - http://eudml.org/doc/103979
ER -

References

top
  1. [1] A. DAVIS and F. W. WILSON, Jr., Vector fields tangent to foliations I : Reeb foliations, Jour. Differential equations, 11 (1972), 491-498. Zbl0242.57012MR46 #8238
  2. [2] N. KOPELL, Commuting Diffeomorphisms, Global Analysis, Proc. Symp. Pure Math., XIV, A.M.S., 1970, Providence. Zbl0225.57020
  3. [3] J. MILNOR, Singular points of complex hypersurfaces, Ann. of Math. Studies, 61, Princeton, 1968. Zbl0184.48405MR39 #969
  4. [4] S. P. NOVIKOV, Topology of foliations, Trudy Moskov. Mat. Obšč., 14 (1965), 248-278, A.M.S. Transl., 1967, 286-304. Zbl0247.57006MR34 #824
  5. [5] G. REEB, Sur certaines propriétés topologiques des variétés feuilletées, Act. Sci. Ind., No. 1183, Hermann, Paris, 1952. Zbl0049.12602MR14,1113a
  6. [6] B. L. REINHART, Line elements on the torus, Amer. J. Math., 81 (1959), 617-631. Zbl0098.29006MR22 #1915
  7. [7] E. SILBERSTEIN, Multifoliations on Mn × S1 where Mn is a stably parallelizable manifold, Proc. London Math. Soc., (3), 35 (1977), 463-482. Zbl0382.57009MR58 #24294
  8. [8] I. TAMURA, Foliations and spinnable structures on manifolds, Ann. Inst. Fourier, 23 (1973), 197-214. Zbl0269.57012MR50 #14788
  9. [9] W. THURSTON, Foliations of three-manifolds which are circle bundles, Thesis, Univ. of California, Berkeley, 1972. 
  10. [10] W. THURSTON, Non-cobordant foliations of S3, Bull. Amer. Math. Soc., 78 (1972), 511-514. Zbl0266.57004MR45 #7741

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.