Displaying similar documents to “Entropy of transverse foliations”

Entropy of distal groups, pseudogroups, foliations and laminations

Andrzej Biś, Paweł Walczak (2011)

Annales Polonici Mathematici

Similarity:

A distality property for pseudogroups and foliations is defined. Distal foliated bundles satisfying some growth conditions are shown to have zero geometric entropy in the sense of É. Ghys, R. Langevin and P. Walczak [Acta Math. 160 (1988)].

Entropy in Thermodynamics: from Foliation to Categorization

Radosław A. Kycia (2021)

Communications in Mathematics

Similarity:

We overview the notion of entropy in thermodynamics. We start from the smooth case using differential forms on the manifold, which is the natural language for thermodynamics. Then the axiomatic definition of entropy as ordering on a set that is induced by adiabatic processes will be outlined. Finally, the viewpoint of category theory is provided, which reinterprets the ordering structure as a category of pre-ordered sets.

Maličky-Riečan's entropy as a version of operator entropy

Bartosz Frej (2006)

Fundamenta Mathematicae

Similarity:

The paper deals with the notion of entropy for doubly stochastic operators. It is shown that the entropy defined by Maličky and Riečan in [MR] is equal to the operator entropy proposed in [DF]. Moreover, some continuity properties of the [MR] entropy are established.

Entropy pairs of ℤ² and their directional properties

Kyewon Koh Park, Uijung Lee (2004)

Studia Mathematica

Similarity:

Topological and metric entropy pairs of ℤ²-actions are defined and their properties are investigated, analogously to ℤ-actions. In particular, mixing properties are studied in connection with entropy pairs.

The entropy conjecture for diffeomorphisms away from tangencies

Gang Liao, Marcelo Viana, Jiagang Yang (2013)

Journal of the European Mathematical Society

Similarity:

We prove that every C 1 diffeomorphism away from homoclinic tangencies is entropy expansive, with locally uniform expansivity constant. Consequently, such diffeomorphisms satisfy Shub’s entropy conjecture: the entropy is bounded from below by the spectral radius in homology. Moreover, they admit principal symbolic extensions, and the topological entropy and metrical entropy vary continuously with the map. In contrast, generic diffeomorphisms with persistent tangencies are not entropy expansive. ...

On the origin and development of some notions of entropy

Francisco Balibrea (2015)

Topological Algebra and its Applications

Similarity:

Discrete dynamical systems are given by the pair (X, f ) where X is a compact metric space and f : X → X a continuous maps. During years, a long list of results have appeared to precise and understand what is the complexity of the systems. Among them, one of the most popular is that of topological entropy. In modern applications other conditions on X and f have been considered. For example X can be non-compact or f can be discontinuous (only in a finite number of points and with bounded...

Entropy dimension and variational principle

Young-Ho Ahn, Dou Dou, Kyewon Koh Park (2010)

Studia Mathematica

Similarity:

Recently the notions of entropy dimension for topological and measurable dynamical systems were introduced in order to study the complexity of zero entropy systems. We exhibit a class of strictly ergodic models whose topological entropy dimensions range from zero to one and whose measure-theoretic entropy dimensions are identically zero. Hence entropy dimension does not obey the variational principle.

Fiber entropy and conditional variational principles in compact non-metrizable spaces

Tomasz Downarowicz, Jacek Serafin (2002)

Fundamenta Mathematicae

Similarity:

We consider a pair of topological dynamical systems on compact Hausdorff (not necessarily metrizable) spaces, one being a factor of the other. Measure-theoretic and topological notions of fiber entropy and conditional entropy are defined and studied. Abramov and Rokhlin's definition of fiber entropy is extended, using disintegration. We prove three variational principles of conditional nature, partly generalizing some results known before in metric spaces: (1) the topological conditional...

A new approach to mutual information

Fumio Hiai, Dénes Petz (2007)

Banach Center Publications

Similarity:

A new expression as a certain asymptotic limit via "discrete micro-states" of permutations is provided for the mutual information of both continuous and discrete random variables.