Filtrations by Complete Ideals and Applications
E. Casas Alvero (1993)
Cours de l'institut Fourier
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
E. Casas Alvero (1993)
Cours de l'institut Fourier
Similarity:
Jan Mycielski (1969)
Colloquium Mathematicae
Similarity:
Zandt, Michael (1995)
Beiträge zur Algebra und Geometrie
Similarity:
Steven Dale Cutkosky (1989)
Inventiones mathematicae
Similarity:
J. E. Baumgartner, A. D. Taylor, S. Wagon
Similarity:
CONTENTSPreface.............................................................................................. 5Chapter I. Preliminaries................................................................. 61. Notation and terminology.......................................................... 62. Results from the literature......................................................... 93. Definitions and basic properties.............................................. 11Chapter II. Subnormality and...
Marek Balcerzak (1990)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
A. Kwela, P. Zakrzewski (2017)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
This note is devoted to combinatorial properties of ideals on the set of natural numbers. By a result of Mathias, two such properties, selectivity and density, in the case of definable ideals, exclude each other. The purpose of this note is to measure the ``distance'' between them with the help of ultrafilter topologies of Louveau.
Jeppe Christoffer Dyre (1982)
Mathematica Scandinavica
Similarity:
W. Żelazko (2005)
Studia Mathematica
Similarity:
We prove that a real or complex F-algebra has all left and right ideals closed if and only if it is noetherian.
A. Anjaneyulu (1980)
Semigroup forum
Similarity:
Balcerzak, Marek, Wroński, Stanisław (2015-11-17T11:49:55Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
W. Żelazko (2006)
Studia Mathematica
Similarity:
We prove that a real or complex unital F-algebra has all maximal left ideals closed if and only if the set of all its invertible elements is open. Consequently, such an algebra also automatically has all maximal right ideals closed.