Automorphism groups of free metabelian nilpotent groups.
([unknown])
Algebra i Logika
Similarity:
([unknown])
Algebra i Logika
Similarity:
Frederick Hoffmann (1964)
Mathematische Zeitschrift
Similarity:
Andrzej Mostowski (1962)
Fundamenta Mathematicae
Similarity:
Rüdiger Göbel, Agnes T. Paras (2001)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Srinivasan, S. (1987)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Gérard Endimioni (2008)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
D. Segal, F.J. Grunewald, L.S. Sterling (1982)
Mathematische Zeitschrift
Similarity:
John C. Lennox, Derek J. S. Robinson (1980)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
D. Segal, F.J. Grunewald, G.C. Smith (1988)
Inventiones mathematicae
Similarity:
Peter Hilton, Robert Militello (1992)
Publicacions Matemàtiques
Similarity:
We identify two generalizations of the notion of a finitely generated nilpotent. Thus a nilpotent group G is fgp if Gp is fg as p-local group for each p; and G is fg-like if there exists a fg nilpotent group H such that Gp ≅ Hp for all p. The we have proper set-inclusions: {fg} ⊂ {fg-like} ⊂ {fgp}. We examine the extent to which fg-like nilpotent groups satisfy the axioms for...
Fιndιk, Şehmus (2010)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: 17B01, 17B30, 17B40. Let Lm,c be the free m-generated metabelian nilpotent of class c Lie algebra over a field of characteristic 0. An automorphism φ of Lm,c is called normal if φ(I) = I for every ideal I of the algebra Lm,c. Such automorphisms form a normal subgroup N(Lm,c) of Aut (Lm,c) containing the group of inner automorphisms. We describe the group of normal automorphisms of Lm,c and the quotient group of Aut (Lm,c) modulo N(Lm,c). ...
B. AMBERG, S. Franciosi, F. Giovanni (1995)
Forum mathematicum
Similarity: