The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Geometric and combinatorial structure of a class of spherical folding tessellations – I”

On deformations of spherical isometric foldings

Ana M. Breda, Altino F. Santos (2010)

Czechoslovak Mathematical Journal

Similarity:

The behavior of special classes of isometric foldings of the Riemannian sphere S 2 under the action of angular conformal deformations is considered. It is shown that within these classes any isometric folding is continuously deformable into the spherical isometric folding f s defined by f s ( x , y , z ) = ( x , y , | z | ) .

On the five-point theorems due to Lappan

Yan Xu (2011)

Annales Polonici Mathematici

Similarity:

By using an extension of the spherical derivative introduced by Lappan, we obtain some results on normal functions and normal families, which extend Lappan's five-point theorems and Marty's criterion, and improve some previous results due to Li and Xie, and the author. Also, another proof of Lappan's theorem is given.

Some Facts about Trigonometry and Euclidean Geometry

Roland Coghetto (2014)

Formalized Mathematics

Similarity:

We calculate the values of the trigonometric functions for angles: [XXX] , by [16]. After defining some trigonometric identities, we demonstrate conventional trigonometric formulas in the triangle, and the geometric property, by [14], of the triangle inscribed in a semicircle, by the proposition 3.31 in [15]. Then we define the diameter of the circumscribed circle of a triangle using the definition of the area of a triangle and prove some identities of a triangle [9]. We conclude by...

Asymptotic spherical analysis on the Heisenberg group

Jacques Faraut (2010)

Colloquium Mathematicae

Similarity:

The asymptotics of spherical functions for large dimensions are related to spherical functions for Olshanski spherical pairs. In this paper we consider inductive limits of Gelfand pairs associated to the Heisenberg group. The group K = U(n) × U(p) acts multiplicity free on 𝓟(V), the space of polynomials on V = M(n,p;ℂ), the space of n × p complex matrices. The group K acts also on the Heisenberg group H = V × ℝ. By a result of Carcano, the pair (G,K) with G = K ⋉ H is a Gelfand pair....