Some Facts about Trigonometry and Euclidean Geometry
Formalized Mathematics (2014)
- Volume: 22, Issue: 4, page 313-319
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topRoland Coghetto. "Some Facts about Trigonometry and Euclidean Geometry." Formalized Mathematics 22.4 (2014): 313-319. <http://eudml.org/doc/270835>.
@article{RolandCoghetto2014,
abstract = {We calculate the values of the trigonometric functions for angles: [XXX] , by [16]. After defining some trigonometric identities, we demonstrate conventional trigonometric formulas in the triangle, and the geometric property, by [14], of the triangle inscribed in a semicircle, by the proposition 3.31 in [15]. Then we define the diameter of the circumscribed circle of a triangle using the definition of the area of a triangle and prove some identities of a triangle [9]. We conclude by indicating that the diameter of a circle is twice the length of the radius},
author = {Roland Coghetto},
journal = {Formalized Mathematics},
keywords = {Euclidean geometry; trigonometry; circumcircle; right-angled},
language = {eng},
number = {4},
pages = {313-319},
title = {Some Facts about Trigonometry and Euclidean Geometry},
url = {http://eudml.org/doc/270835},
volume = {22},
year = {2014},
}
TY - JOUR
AU - Roland Coghetto
TI - Some Facts about Trigonometry and Euclidean Geometry
JO - Formalized Mathematics
PY - 2014
VL - 22
IS - 4
SP - 313
EP - 319
AB - We calculate the values of the trigonometric functions for angles: [XXX] , by [16]. After defining some trigonometric identities, we demonstrate conventional trigonometric formulas in the triangle, and the geometric property, by [14], of the triangle inscribed in a semicircle, by the proposition 3.31 in [15]. Then we define the diameter of the circumscribed circle of a triangle using the definition of the area of a triangle and prove some identities of a triangle [9]. We conclude by indicating that the diameter of a circle is twice the length of the radius
LA - eng
KW - Euclidean geometry; trigonometry; circumcircle; right-angled
UR - http://eudml.org/doc/270835
ER -
References
top- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [4] Czesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
- [5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
- [6] Czesław Bylinski. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99-107, 2005.
- [7] Czesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
- [8] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [9] H.S.M. Coxeter and S.L. Greitzer. Geometry Revisited. The Mathematical Association of America (Inc.), 1967. Zbl0166.16402
- [10] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
- [11] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [13] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559-562, 1991.
- [14] Nikolai Vladimirovich Efimov. G´eom´etrie sup´erieure. Mir, 1981.
- [15] Richard Fitzpatrick. Euclid’s Elements. Lulu.com, 2007.
- [16] Robin Hartshorne. Geometry: Euclid and beyond. Springer, 2000.
- [17] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
- [18] Artur Korniłowicz and Yasunari Shidama. Inverse trigonometric functions arcsin and arccos. Formalized Mathematics, 13(1):73-79, 2005. Zbl1276.26026
- [19] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidean topological space. Formalized Mathematics, 11(3):281-287, 2003.
- [20] Robert Milewski. Trigonometric form of complex numbers. Formalized Mathematics, 9 (3):455-460, 2001.
- [21] Yatsuka Nakamura. General Fashoda meet theorem for unit circle and square. Formalized Mathematics, 11(3):213-224, 2003.
- [22] Yatsuka Nakamura and Czesław Bylinski. Extremal properties of vertices on special polygons. Part I. Formalized Mathematics, 5(1):97-102, 1996.
- [23] Chanapat Pacharapokin, Kanchun, and Hiroshi Yamazaki. Formulas and identities of trigonometric functions. Formalized Mathematics, 12(2):139-141, 2004.
- [24] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
- [25] Marco Riccardi. Heron’s formula and Ptolemy’s theorem. Formalized Mathematics, 16 (2):97-101, 2008. doi:10.2478/v10037-008-0014-2.[Crossref]
- [26] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
- [27] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [28] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
- [29] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.