Displaying similar documents to “Control variational method approach to bending and contact problems for Gao beam”

Control in obstacle-pseudoplate problems with friction on the boundary. optimal design and problems with uncertain data

Ivan Hlaváček, Ján Lovíšek (2001)

Applicationes Mathematicae

Similarity:

Four optimal design problems and a weight minimization problem are considered for elastic plates with small bending rigidity, resting on a unilateral elastic foundation, with inner rigid obstacles and a friction condition on a part of the boundary. The state problem is represented by a variational inequality and the design variables influence both the coefficients and the set of admissible state functions. If some input data are allowed to be uncertain a new method of reliable solutions...

Conical differentiability for bone remodeling contact rod models

Isabel N. Figueiredo, Carlos F. Leal, Cecília S. Pinto (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We prove the conical differentiability of the solution to a bone remodeling contact rod model, for given data (applied loads and rigid obstacle), with respect to small perturbations of the cross section of the rod. The proof is based on the special structure of the model, composed of a variational inequality coupled with an ordinary differential equation with respect to time. This structure enables the verification of the two following fundamental results: the polyhedricity of a modified...

Sensitivity Analysis of a Nonlinear Obstacle Plate Problem

Isabel N. Figueiredo, Carlos F. Leal (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We analyse the sensitivity of the solution of a nonlinear obstacle plate problem, with respect to small perturbations of the middle plane of the plate. This analysis, which generalizes the results of [9,10] for the linear case, is done by application of an abstract variational result [6], where the sensitivity of parameterized variational inequalities in Banach spaces, without uniqueness of solution, is quantified in terms of a generalized derivative, that is the proto-derivative....

The global control of nonlinear partial differential equations and variational inequalities.

J. E. Rubio (1992)

Extracta Mathematicae

Similarity:

We study in this note the control of nonlinear diffusion equation and of parabolic variational inequalities by means of an approach which has been proved useful in the analysis of the control of nonlinear ordinary differential equations ([3]) and linear partial differential equations ([2] and [3]). It is based on an idea of Young [7], consisting in the replacement of classical variational problems by problems in measure spaces; its extension to optimal control problems, and the realization...

A General Linear Theory of Elastic Plates and its Variational Validation

Danilo Percivale, Paolo Podio-Guidugli (2009)

Bollettino dell'Unione Matematica Italiana

Similarity:

We provide a variational justification for shearable-plate models that generalize the classic Reissner-Mindlin model. Firstly, we give an argument leading to choose a fairly general linearly elastic monoclinic material response. Secondly, we prove that, for materials in such constitutive class, the variational limit of certain suitably scaled 3D energies is a functional whose minimum over a maximal subspace of admissible functions coincides with the minimum of the generalized Reissner-Mindlin...

The weak solution of an antiplane contact problem for electro-viscoelastic materials with long-term memory

Ammar Derbazi, Mohamed Dalah, Amar Megrous (2016)

Applications of Mathematics

Similarity:

We study a mathematical model which describes the antiplane shear deformation of a cylinder in frictionless contact with a rigid foundation. The material is assumed to be electro-viscoelastic with long-term memory, and the friction is modeled with Tresca's law and the foundation is assumed to be electrically conductive. First we derive the classical variational formulation of the model which is given by a system coupling an evolutionary variational equality for the displacement field...

Analysis of a contact adhesive problem with normal compliance and nonlocal friction

Arezki Touzaline (2012)

Annales Polonici Mathematici

Similarity:

The paper deals with the problem of a quasistatic frictional contact between a nonlinear elastic body and a deformable foundation. The contact is modelled by a normal compliance condition in such a way that the penetration is restricted with a unilateral constraint and associated to the nonlocal friction law with adhesion. The evolution of the bonding field is described by a first-order differential equation. We establish a variational formulation of the mechanical problem and prove...

A unilateral contact problem with slip-dependent friction

Arezki Touzaline (2016)

Applicationes Mathematicae

Similarity:

We consider a mathematical model which describes a static contact between a nonlinear elastic body and an obstacle. The contact is modelled with Signorini's conditions, associated with a slip-dependent version of Coulomb's nonlocal friction law. We derive a variational formulation and prove its unique weak solvability. We also study the finite element approximation of the problem and obtain an optimal error estimate under extra regularity for the solution. Finally, we establish the convergence...