Displaying similar documents to “Convolution of second order linear recursive sequences II.”

Binomial sequences

Andrzej Nowicki (2019)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

We present a description of all binomial sequences of polynomials in one variable over a field of characteristic zero.

The positivity problem for fourth order linear recurrence sequences is decidable

Pinthira Tangsupphathawat, Narong Punnim, Vichian Laohakosol (2012)

Colloquium Mathematicae

Similarity:

The problem whether each element of a sequence satisfying a fourth order linear recurrence with integer coefficients is nonnegative, referred to as the Positivity Problem for fourth order linear recurrence sequence, is shown to be decidable.

Number Sequences in an Integral Form with a Generalized Convolution Property and Somos-4 Hankel Determinants

Rajkovic, Predrag M., Barry, Paul, Savic, Natasa (2012)

Mathematica Balkanica New Series

Similarity:

MSC 2010: 11B83, 05A19, 33C45 This paper is dealing with the Hankel determinants of the special number sequences given in an integral form. We show that these sequences satisfy a generalized convolution property and the Hankel determinants have the generalized Somos-4 property. Here, we recognize well known number sequences such as: the Fibonacci, Catalan, Motzkin and SchrÄoder sequences, like special cases.

Algebra of Polynomially Bounded Sequences and Negligible Functions

Hiroyuki Okazaki (2015)

Formalized Mathematics

Similarity:

In this article we formalize negligible functions that play an essential role in cryptology [10], [2]. Generally, a cryptosystem is secure if the probability of succeeding any attacks against the cryptosystem is negligible. First, we formalize the algebra of polynomially bounded sequences [20]. Next, we formalize negligible functions and prove the set of negligible functions is a subset of the algebra of polynomially bounded sequences. Moreover, we then introduce equivalence relation...