Displaying similar documents to “A complement of positive weak almost Dunford-Pettis operators on Banach lattices”

A note on L-Dunford-Pettis sets in a topological dual Banach space

Abderrahman Retbi (2020)

Czechoslovak Mathematical Journal

Similarity:

The present paper is devoted to some applications of the notion of L-Dunford-Pettis sets to several classes of operators on Banach lattices. More precisely, we establish some characterizations of weak Dunford-Pettis, Dunford-Pettis completely continuous, and weak almost Dunford-Pettis operators. Next, we study the relationships between L-Dunford-Pettis, and Dunford-Pettis (relatively compact) sets in topological dual Banach spaces.

The weak compactness of almost Dunford-Pettis operators

Belmesnaoui Aqzzouz, Aziz Elbour, Othman Aboutafail (2011)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We characterize Banach lattices on which every positive almost Dunford-Pettis operator is weakly compact.

Some characterizations of Banach lattices with the Schur property.

Witold Wnuk (1989)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

This note contains a short proof of the equivalence of the Schur and Dunford-Pettis properties in the class of discrete KB-spaces. We also present an operator characterization of the Schur property (Theorem 2) and we notice that Banach lattices which band hereditary l1 coincide with Banach lattices having the Schur property. (This characterization is due to Popa (1977)). Moreover, the paper offers examples of Banach lattices with the positive Schur property and without the Schur property...

The b -weak compactness of weak Banach-Saks operators

Belmesnaoui Aqzzouz, Othman Aboutafail, Taib Belghiti, Jawad H'michane (2013)

Mathematica Bohemica

Similarity:

We characterize Banach lattices on which every weak Banach-Saks operator is b-weakly compact.

An approach to Schreier's space.

Jesús M. Fernández Castillo, Manuel González (1991)

Extracta Mathematicae

Similarity:

In 1930, J. Schreier [10] introduced the notion of admissibility in order to show that the now called weak-Banach-Saks property does not hold in every Banach space. A variation of this idea produced the Schreier's space (see [1],[2]). This is the space obtained by completion of the space of finite sequences with respect to the following norm: ||x||S = sup(A admissible)j ∈ A |xj|, ...