The b -weak compactness of weak Banach-Saks operators

Belmesnaoui Aqzzouz; Othman Aboutafail; Taib Belghiti; Jawad H'michane

Mathematica Bohemica (2013)

  • Volume: 138, Issue: 2, page 113-120
  • ISSN: 0862-7959

Abstract

top
We characterize Banach lattices on which every weak Banach-Saks operator is b-weakly compact.

How to cite

top

Aqzzouz, Belmesnaoui, et al. "The $\rm b$-weak compactness of weak Banach-Saks operators." Mathematica Bohemica 138.2 (2013): 113-120. <http://eudml.org/doc/252465>.

@article{Aqzzouz2013,
abstract = {We characterize Banach lattices on which every weak Banach-Saks operator is b-weakly compact.},
author = {Aqzzouz, Belmesnaoui, Aboutafail, Othman, Belghiti, Taib, H'michane, Jawad},
journal = {Mathematica Bohemica},
keywords = {b-weakly compact operator; weak Banach-Saks operator; Banach lattice; (b)-property; KB-space; -weakly compact operator; weak Banach-Saks operator; Banach lattice},
language = {eng},
number = {2},
pages = {113-120},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The $\rm b$-weak compactness of weak Banach-Saks operators},
url = {http://eudml.org/doc/252465},
volume = {138},
year = {2013},
}

TY - JOUR
AU - Aqzzouz, Belmesnaoui
AU - Aboutafail, Othman
AU - Belghiti, Taib
AU - H'michane, Jawad
TI - The $\rm b$-weak compactness of weak Banach-Saks operators
JO - Mathematica Bohemica
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 138
IS - 2
SP - 113
EP - 120
AB - We characterize Banach lattices on which every weak Banach-Saks operator is b-weakly compact.
LA - eng
KW - b-weakly compact operator; weak Banach-Saks operator; Banach lattice; (b)-property; KB-space; -weakly compact operator; weak Banach-Saks operator; Banach lattice
UR - http://eudml.org/doc/252465
ER -

References

top
  1. Aliprantis, C. D., Burkinshaw, O., Positive Operators. Reprint of the 1985 original, Springer, Berlin (2006). (2006) Zbl1098.47001MR2262133
  2. Aldous, D. J., 10.1017/S0305004100055559, Math. Proc. Camb. Philos. Soc. 85 (1979), 117-123. (1979) Zbl0389.46027MR0510406DOI10.1017/S0305004100055559
  3. Alpay, S., Altin, B., Tonyali, C., 10.1023/A:1025840528211, Positivity 7 (2003), 135-139. (2003) Zbl1036.46018MR2028377DOI10.1023/A:1025840528211
  4. Altin, B., Some property of b-weakly compact operators, G.U. Journal of Science 18 (2005), 391-395. (2005) 
  5. Aqzzouz, B., Elbour, A., Hmichane, J., 10.1007/s11117-008-2288-6, Positivity 13 (2009), 683-692. (2009) Zbl1191.47024MR2538515DOI10.1007/s11117-008-2288-6
  6. Aqzzouz, B., Hmichane, J., 10.2989/16073606.2013.805869, Quaest. Math. 36 (2013), 1-11. (2013) MR3176020DOI10.2989/16073606.2013.805869
  7. Aqzzouz, B., Hmichane, J., 10.1007/s11785-011-0138-1, Complex Anal. Oper. Theory 7 (2013), 3-8. (2013) MR3010785DOI10.1007/s11785-011-0138-1
  8. Beauzamy, B., Propriété de Banach-Saks et modèles étalés, French Semin. Geom. des Espaces de Banach, Ec. Polytech., Cent. Math., 1977-1978, Expose No. 3, 16 pp. (1978). (1978) Zbl0386.46017MR0520205
  9. Beauzamy, B., 10.4064/sm-66-3-227-235, Stud. Math. 66 (1980), 227-235. (1980) Zbl0437.46061MR0579729DOI10.4064/sm-66-3-227-235
  10. Cheng, N., Chen, Z.-L., b-AM-compact operators on Banach lattices, Chin. J. Eng. Math. 27 (2010). (2010) Zbl1235.47020MR2777452
  11. Flores, J., Tradacete, P., 10.4064/sm189-1-7, Stud. Math. 189 (2008), 91-101. (2008) Zbl1163.47031MR2443377DOI10.4064/sm189-1-7
  12. Rosenthal, H. P., Weakly independent sequences and the weak Banach-Saks property, Proceedings of the Durham Symposium on the Relations Between Infinite Dimensional and Finite-Dimentional Convexity (July 1975). 
  13. Zhenglu, J., Xiaoyong, F., The Banach-Saks property of the Banach product spaces, Arxiv: math/0702538V1 [math. FA] 19 feb 2007. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.