The -weak compactness of weak Banach-Saks operators
Belmesnaoui Aqzzouz; Othman Aboutafail; Taib Belghiti; Jawad H'michane
Mathematica Bohemica (2013)
- Volume: 138, Issue: 2, page 113-120
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAqzzouz, Belmesnaoui, et al. "The $\rm b$-weak compactness of weak Banach-Saks operators." Mathematica Bohemica 138.2 (2013): 113-120. <http://eudml.org/doc/252465>.
@article{Aqzzouz2013,
	abstract = {We characterize Banach lattices on which every weak Banach-Saks operator is b-weakly compact.},
	author = {Aqzzouz, Belmesnaoui, Aboutafail, Othman, Belghiti, Taib, H'michane, Jawad},
	journal = {Mathematica Bohemica},
	keywords = {b-weakly compact operator; weak Banach-Saks operator; Banach lattice; (b)-property; KB-space; -weakly compact operator; weak Banach-Saks operator; Banach lattice},
	language = {eng},
	number = {2},
	pages = {113-120},
	publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
	title = {The $\rm b$-weak compactness of weak Banach-Saks operators},
	url = {http://eudml.org/doc/252465},
	volume = {138},
	year = {2013},
}
TY  - JOUR
AU  - Aqzzouz, Belmesnaoui
AU  - Aboutafail, Othman
AU  - Belghiti, Taib
AU  - H'michane, Jawad
TI  - The $\rm b$-weak compactness of weak Banach-Saks operators
JO  - Mathematica Bohemica
PY  - 2013
PB  - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL  - 138
IS  - 2
SP  - 113
EP  - 120
AB  - We characterize Banach lattices on which every weak Banach-Saks operator is b-weakly compact.
LA  - eng
KW  - b-weakly compact operator; weak Banach-Saks operator; Banach lattice; (b)-property; KB-space; -weakly compact operator; weak Banach-Saks operator; Banach lattice
UR  - http://eudml.org/doc/252465
ER  - 
References
top- Aliprantis, C. D., Burkinshaw, O., Positive Operators. Reprint of the 1985 original, Springer, Berlin (2006). (2006) Zbl1098.47001MR2262133
- Aldous, D. J., 10.1017/S0305004100055559, Math. Proc. Camb. Philos. Soc. 85 (1979), 117-123. (1979) Zbl0389.46027MR0510406DOI10.1017/S0305004100055559
- Alpay, S., Altin, B., Tonyali, C., 10.1023/A:1025840528211, Positivity 7 (2003), 135-139. (2003) Zbl1036.46018MR2028377DOI10.1023/A:1025840528211
- Altin, B., Some property of b-weakly compact operators, G.U. Journal of Science 18 (2005), 391-395. (2005)
- Aqzzouz, B., Elbour, A., Hmichane, J., 10.1007/s11117-008-2288-6, Positivity 13 (2009), 683-692. (2009) Zbl1191.47024MR2538515DOI10.1007/s11117-008-2288-6
- Aqzzouz, B., Hmichane, J., 10.2989/16073606.2013.805869, Quaest. Math. 36 (2013), 1-11. (2013) MR3176020DOI10.2989/16073606.2013.805869
- Aqzzouz, B., Hmichane, J., 10.1007/s11785-011-0138-1, Complex Anal. Oper. Theory 7 (2013), 3-8. (2013) MR3010785DOI10.1007/s11785-011-0138-1
- Beauzamy, B., Propriété de Banach-Saks et modèles étalés, French Semin. Geom. des Espaces de Banach, Ec. Polytech., Cent. Math., 1977-1978, Expose No. 3, 16 pp. (1978). (1978) Zbl0386.46017MR0520205
- Beauzamy, B., 10.4064/sm-66-3-227-235, Stud. Math. 66 (1980), 227-235. (1980) Zbl0437.46061MR0579729DOI10.4064/sm-66-3-227-235
- Cheng, N., Chen, Z.-L., b-AM-compact operators on Banach lattices, Chin. J. Eng. Math. 27 (2010). (2010) Zbl1235.47020MR2777452
- Flores, J., Tradacete, P., 10.4064/sm189-1-7, Stud. Math. 189 (2008), 91-101. (2008) Zbl1163.47031MR2443377DOI10.4064/sm189-1-7
- Rosenthal, H. P., Weakly independent sequences and the weak Banach-Saks property, Proceedings of the Durham Symposium on the Relations Between Infinite Dimensional and Finite-Dimentional Convexity (July 1975).
- Zhenglu, J., Xiaoyong, F., The Banach-Saks property of the Banach product spaces, Arxiv: math/0702538V1 [math. FA] 19 feb 2007.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 