Displaying similar documents to “Robust sampled-data observer design for Lipschitz nonlinear systems”

Globally uniformly ultimately bounded observer design for a class of nonlinear systems with sampled and delayed measurements

Daoyuan Zhang, Yanjun Shen, Xiao Hua Xia (2016)

Kybernetika

Similarity:

In this paper, we consider two kinds of sampled-data observer design for a class of nonlinear systems. The system output is sampled and transmitted under two kinds of truncations. Firstly, we present definitions of the truncations and the globally uniformly ultimately bounded observer, respectively. Then, two kinds of observers are proposed by using the delayed measurements with these two truncations, respectively. The observers are hybrid in essence. For the first kind of observers,...

Non-fragile observers design for nonlinear systems with unknown Lipschitz constant

Fan Zhou, Yanjun Shen, Zebin Wu (2024)

Kybernetika

Similarity:

In this paper, the problem of globally asymptotically stable non-fragile observer design is investigated for nonlinear systems with unknown Lipschitz constant. Firstly, a definition of globally asymptotically stable non-fragile observer is given for nonlinear systems. Then, an observer function of output is derived by an output filter, and a dynamic high-gain is constructed to deal with unknown Lipschitz constant. Even the observer gains contain diverse large disturbances, the observer...

Image sampling with quasicrystals.

Grundland, Mark, Patera, Jirí, Masáková, Zuzana, Dodgson, Neil A. (2009)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Similarity:

Fixed precision optimal allocation in two-stage sampling

Wojciech Niemiro, Jacek Wesołowski (2001)

Applicationes Mathematicae

Similarity:

Two-stage sampling schemes arise in survey sampling, especially in situations when the complete update of the frame is difficult. In this paper we solve the problem of fixed precision optimal allocation in two special two-stage sampling schemes. The solution is based on reducing the original question to an eigenvalue problem and then using the Perron-Frobenius theorem.

Optimal random sampling for spectrum estimation in DASP applications

Andrzej Tarczynski, Dongdong Qu (2005)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper we analyse a class of DASP (Digital Alias-free Signal Processing) methods for spectrum estimation of sampled signals. These methods consist in sampling the processed signals at randomly selected time instants. We construct estimators of Fourier transforms of the analysed signals. The estimators are unbiased inside arbitrarily wide frequency ranges, regardless of how sparsely the signal samples are collected. In order to facilitate quality assessment of the estimators, we...

State estimation for a class of nonlinear systems

Benoît Schwaller, Denis Ensminger, Birgitta Dresp-Langley, José Ragot (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

We propose a new type of Proportional Integral (PI) state observer for a class of nonlinear systems in continuous time which ensures an asymptotic stable convergence of the state estimates. Approximations of nonlinearity are not necessary to obtain such results, but the functions must be, at least locally, of the Lipschitz type. The obtained state variables are exact and robust against noise. Naslin's damping criterion permits synthesizing gains in an algebraically simple and efficient...

Bi-Lipschitz trivialization of the distance function to a stratum of a stratification

Adam Parusiński (2005)

Annales Polonici Mathematici

Similarity:

Given a Lipschitz stratification 𝒳 that additionally satisfies condition (δ) of Bekka-Trotman (for instance any Lipschitz stratification of a subanalytic set), we show that for every stratum N of 𝒳 the distance function to N is locally bi-Lipschitz trivial along N. The trivialization is obtained by integration of a Lipschitz vector field.