Displaying similar documents to “Analysis of the FEM and DGM for an elliptic problem with a nonlinear Newton boundary condition”

On the effect of numerical integration in the finite element solution of an elliptic problem with a nonlinear Newton boundary condition

Ondřej Bartoš, Miloslav Feistauer, Filip Roskovec (2019)

Applications of Mathematics

Similarity:

This paper is concerned with the analysis of the finite element method for the numerical solution of an elliptic boundary value problem with a nonlinear Newton boundary condition in a two-dimensional polygonal domain. The weak solution loses regularity in a neighbourhood of boundary singularities, which may be at corners or at roots of the weak solution on edges. The main attention is paid to the study of error estimates. It turns out that the order of convergence is not dampened by...

On the Newton-Kantorovich theorem and nonlinear finite element methods

Ioannis K. Argyros (2009)

Applicationes Mathematicae

Similarity:

Using a weaker version of the Newton-Kantorovich theorem, we provide a discretization result to find finite element solutions of elliptic boundary value problems. Our hypotheses are weaker and under the same computational cost lead to finer estimates on the distances involved and a more precise information on the location of the solution than before.

A new approach for finding weaker conditions for the convergence of Newton's method

Ioannis K. Argyros (2005)

Applicationes Mathematicae

Similarity:

The Newton-Kantorovich hypothesis (15) has been used for a long time as a sufficient condition for convergence of Newton's method to a locally unique solution of a nonlinear equation in a Banach space setting. Recently in [3], [4] we showed that this hypothesis can always be replaced by a condition weaker in general (see (18), (19) or (20)) whose verification requires the same computational cost. Moreover, finer error bounds and at least as precise information on the location of the...

A general semilocal convergence result for Newton’s method under centered conditions for the second derivative

José Antonio Ezquerro, Daniel González, Miguel Ángel Hernández (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

From Kantorovich’s theory we present a semilocal convergence result for Newton’s method which is based mainly on a modification of the condition required to the second derivative of the operator involved. In particular, instead of requiring that the second derivative is bounded, we demand that it is centered. As a consequence, we obtain a modification of the starting points for Newton’s method. We illustrate this study with applications to ...