On the effect of numerical integration in the finite element solution of an elliptic problem with a nonlinear Newton boundary condition

Ondřej Bartoš; Miloslav Feistauer; Filip Roskovec

Applications of Mathematics (2019)

  • Volume: 64, Issue: 2, page 129-167
  • ISSN: 0862-7940

Abstract

top
This paper is concerned with the analysis of the finite element method for the numerical solution of an elliptic boundary value problem with a nonlinear Newton boundary condition in a two-dimensional polygonal domain. The weak solution loses regularity in a neighbourhood of boundary singularities, which may be at corners or at roots of the weak solution on edges. The main attention is paid to the study of error estimates. It turns out that the order of convergence is not dampened by the nonlinearity if the weak solution is nonzero on a large part of the boundary. If the weak solution is zero on the whole boundary, the nonlinearity only slows down the convergence of the function values but not the convergence of the gradient. The same analysis is carried out for approximate solutions obtained by numerical integration. The theoretical results are verified by numerical experiments.

How to cite

top

Bartoš, Ondřej, Feistauer, Miloslav, and Roskovec, Filip. "On the effect of numerical integration in the finite element solution of an elliptic problem with a nonlinear Newton boundary condition." Applications of Mathematics 64.2 (2019): 129-167. <http://eudml.org/doc/294831>.

@article{Bartoš2019,
abstract = {This paper is concerned with the analysis of the finite element method for the numerical solution of an elliptic boundary value problem with a nonlinear Newton boundary condition in a two-dimensional polygonal domain. The weak solution loses regularity in a neighbourhood of boundary singularities, which may be at corners or at roots of the weak solution on edges. The main attention is paid to the study of error estimates. It turns out that the order of convergence is not dampened by the nonlinearity if the weak solution is nonzero on a large part of the boundary. If the weak solution is zero on the whole boundary, the nonlinearity only slows down the convergence of the function values but not the convergence of the gradient. The same analysis is carried out for approximate solutions obtained by numerical integration. The theoretical results are verified by numerical experiments.},
author = {Bartoš, Ondřej, Feistauer, Miloslav, Roskovec, Filip},
journal = {Applications of Mathematics},
keywords = {elliptic equation; nonlinear Newton boundary condition; weak solution; finite element discretization; numerical integration; error estimation; effect of numerical integration},
language = {eng},
number = {2},
pages = {129-167},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the effect of numerical integration in the finite element solution of an elliptic problem with a nonlinear Newton boundary condition},
url = {http://eudml.org/doc/294831},
volume = {64},
year = {2019},
}

TY - JOUR
AU - Bartoš, Ondřej
AU - Feistauer, Miloslav
AU - Roskovec, Filip
TI - On the effect of numerical integration in the finite element solution of an elliptic problem with a nonlinear Newton boundary condition
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 2
SP - 129
EP - 167
AB - This paper is concerned with the analysis of the finite element method for the numerical solution of an elliptic boundary value problem with a nonlinear Newton boundary condition in a two-dimensional polygonal domain. The weak solution loses regularity in a neighbourhood of boundary singularities, which may be at corners or at roots of the weak solution on edges. The main attention is paid to the study of error estimates. It turns out that the order of convergence is not dampened by the nonlinearity if the weak solution is nonzero on a large part of the boundary. If the weak solution is zero on the whole boundary, the nonlinearity only slows down the convergence of the function values but not the convergence of the gradient. The same analysis is carried out for approximate solutions obtained by numerical integration. The theoretical results are verified by numerical experiments.
LA - eng
KW - elliptic equation; nonlinear Newton boundary condition; weak solution; finite element discretization; numerical integration; error estimation; effect of numerical integration
UR - http://eudml.org/doc/294831
ER -

References

top
  1. M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, G. N. Wells, 10.11588/ans.2015.100.20553, Archive of Numerical Software 3 (2015), 9-23. (2015) DOI10.11588/ans.2015.100.20553
  2. Bialecki, R., Nowak, A. J., 10.1016/S0307-904X(81)80024-8, Appl. Math. Modelling 5 (1981), 417-421. (1981) Zbl0475.65078DOI10.1016/S0307-904X(81)80024-8
  3. Ciarlet, P. G., 10.1016/S0168-2024(08)70178-4, Studies in Mathematics and Its Applications 4, North Holland, Amsterdam (1978). (1978) Zbl0383.65058MR0520174DOI10.1016/S0168-2024(08)70178-4
  4. Dolejší, V., Feistauer, M., 10.1007/978-3-319-19267-3, Springer Series in Computational Mathematics 48, Springer, Cham (2015). (2015) Zbl1401.76003MR3363720DOI10.1007/978-3-319-19267-3
  5. J. Douglas, Jr., T. Dupont, 10.1007/BF01436565, Numer. Math. 20 (1973), 213-237. (1973) Zbl0234.65096MR0319379DOI10.1007/BF01436565
  6. Evans, L. C., 10.1090/gsm/019, Graduate Studies in Mathematics 19, American Mathematical Society, Providence (2010). (2010) Zbl1194.35001MR2597943DOI10.1090/gsm/019
  7. Feistauer, M., Kalis, H., Rokyta, M., Mathematical modelling of an electrolysis process, Commentat. Math. Univ. Carol. 30 (1989), 465-477. (1989) Zbl0704.35021MR1031864
  8. Feistauer, M., Najzar, K., 10.1007/s002110050318, Numer. Math. 78 (1998), 403-425. (1998) Zbl0888.65118MR1603350DOI10.1007/s002110050318
  9. Feistauer, M., Najzar, K., Sobotíková, V., 10.1080/01630569908816927, Numer. Funct. Anal. Optimization 20 (1999), 835-851. (1999) Zbl0947.65116MR1728186DOI10.1080/01630569908816927
  10. Feistauer, M., Roskovec, F., Sändig, A.-M., 10.1093/imanum/drx070, IMA J. Numer. Anal. 39 (2019), (423-453). (423) MR3903559DOI10.1093/imanum/drx070
  11. Fornberg, B., 10.1017/CBO9780511626357, Cambridge Monographs on Applied and Computational Mathematics 1, Cambridge University Press, Cambridge (1996). (1996) Zbl0844.65084MR1386891DOI10.1017/CBO9780511626357
  12. Franců, J., Monotone operators. A survey directed to applications to differential equations, Appl. Mat. 35 (1990), 257-301. (1990) Zbl0724.47025MR1065003
  13. Ganesh, M., Graham, I. G., Sivaloganathan, J., 10.1137/0731072, SIAM J. Numer. Anal. 31 (1994), 1378-1414. (1994) Zbl0815.41008MR1293521DOI10.1137/0731072
  14. Ganesh, M., Steinbach, O., 10.1216/jiea/1181074294, J. Integral Equations Appl. 11 (1999), 437-459. (1999) Zbl0974.65112MR1738277DOI10.1216/jiea/1181074294
  15. Ganesh, M., Steinbach, O., 10.1090/S0025-5718-00-01266-7, Math. Comput. 70 (2001), 1031-1042. (2001) Zbl0971.65107MR1826575DOI10.1090/S0025-5718-00-01266-7
  16. Grisvard, P., 10.1137/1.9781611972030, Monographs and Studies in Mathematics 24, Pitman Publishing, Boston (1985). (1985) Zbl0695.35060MR0775683DOI10.1137/1.9781611972030
  17. Harriman, K., Houston, P., Senior, B., Süli, E., 10.1090/conm/330, Recent Advances in Scientific Computing and Partial Differential Equations 2002 S. Y. Cheng et al. Contemp. Math. 330; American Mathematical Society, Providence (2003), 89-119. (2003) Zbl1037.65117MR2011714DOI10.1090/conm/330
  18. Hesthaven, J. S., 10.1137/S003614299630587X, SIAM J. Numer. Anal. 35 (1998), 655-676. (1998) Zbl0933.41004MR1618874DOI10.1137/S003614299630587X
  19. Křížek, M., Liu, L., Neittaanmäki, P., 10.1007/0-306-47096-9_19, Applied Nonlinear Analysis A. Sequeira et al. Kluwer Academic/Plenum Publishers, New York (1999), 271-280. (1999) Zbl0953.65081MR1727454DOI10.1007/0-306-47096-9_19
  20. Liu, L., Křížek, M., Finite element analysis of a radiation heat transfer problem, J. Comput. Math. 16 (1998), 327-336. (1998) Zbl0919.65067MR1640963
  21. Moreau, R., Ewans, J. W., 10.1149/1.2115235, J. Electrochem. Soc. 31 (1984), 2251-2259. (1984) DOI10.1149/1.2115235
  22. Powell, M. J. D., 10.1017/cbo9781139171502, Cambridge University Press, Cambridge (1981). (1981) Zbl0453.41001MR0604014DOI10.1017/cbo9781139171502
  23. Rack, H.-J., Vajda, R., Optimal cubic Lagrange interpolation: Extremal node systems with minimal Lebesgue constant, Stud. Univ. Babeş-Bolyai, Math. 60 (2015), 151-171. (2015) Zbl1374.05134MR3355978
  24. Roubíček, T., 10.1007/978-3-0348-7301-7_16, Free Boundary Value Problems 1989 Int. Ser. Numer. Math. 95, Birkhäuser, Basel (1990), 267-275. (1990) Zbl0721.65081MR1111033DOI10.1007/978-3-0348-7301-7_16
  25. Rudin, W., Real and Complex Analysis, McGraw-Hill, New York (1987). (1987) Zbl0925.00005MR0924157

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.