Displaying similar documents to “Quotient structures in lattice effect algebras”

Roughness of Filters in Lattice Implication Algebras

Y. B. Jun, Yang Xu (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

As a generalization of filters in lattice implication algebras, the notion of rough filters in lattice implication algebras is introduced, and some of their properties are considered.

Atomicity of lattice effect algebras and their sub-lattice effect algebras

Jan Paseka, Zdena Riečanová (2009)

Kybernetika

Similarity:

We show some families of lattice effect algebras (a common generalization of orthomodular lattices and MV-effect algebras) each element E of which has atomic center C(E) or the subset S(E) of all sharp elements, resp. the center of compatibility B(E) or every block M of E. The atomicity of E or its sub-lattice effect algebras C(E), S(E), B(E) and blocks M of E is very useful equipment for the investigations of its algebraic and topological properties, the existence or smearing of states...

Classification systems and their lattice

Sándor Radeleczki (2002)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

We define and study classification systems in an arbitrary CJ-generated complete lattice L. Introducing a partial order among the classification systems of L, we obtain a complete lattice denoted by Cls(L). By using the elements of the classification systems, another lattice is also constructed: the box lattice B(L) of L. We show that B(L) is an atomistic complete lattice, moreover Cls(L)=Cls(B(L)). If B(L) is a pseudocomplemented lattice, then every classification system of L is independent...

Irredundant Decomposition of Algebras into One-Dimensional Factors

Bogdan Staruch (2016)

Bulletin of the Section of Logic

Similarity:

We introduce a notion of dimension of an algebraic lattice and, treating such a lattice as the congruence lattice of an algebra, we introduce the dimension of an algebra, too. We define a star-product as a special kind of subdirect product. We obtain the star-decomposition of algebras into one-dimensional factors, which generalizes the known decomposition theorems e.g. for Abelian groups, linear spaces, Boolean algebras.

Residuation in orthomodular lattices

Ivan Chajda, Helmut Länger (2017)

Topological Algebra and its Applications

Similarity:

We show that every idempotent weakly divisible residuated lattice satisfying the double negation law can be transformed into an orthomodular lattice. The converse holds if adjointness is replaced by conditional adjointness. Moreover, we show that every positive right residuated lattice satisfying the double negation law and two further simple identities can be converted into an orthomodular lattice. In this case, also the converse statement is true and the corresponence is nearly one-to-one. ...

Normalization of basic algebras

Miroslav Kolařík (2008)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

We consider algebras determined by all normal identities of basic algebras. For such algebras, we present a representation based on a q-lattice, i.e., the normalization of a lattice.

About the equivalence of nullnorms on bounded lattice

M. Nesibe Kesicioğlu (2017)

Kybernetika

Similarity:

In this paper, an equivalence on the class of nullnorms on a bounded lattice based on the equality of the orders induced by nullnorms is introduced. The set of all incomparable elements w.r.t. the order induced by nullnorms is investigated. Finally, the recently posed open problems have been solved.

Dual Lattice of ℤ-module Lattice

Yuichi Futa, Yasunari Shidama (2017)

Formalized Mathematics

Similarity:

In this article, we formalize in Mizar [5] the definition of dual lattice and their properties. We formally prove that a set of all dual vectors in a rational lattice has the construction of a lattice. We show that a dual basis can be calculated by elements of an inverse of the Gram Matrix. We also formalize a summation of inner products and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL(Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic...

Incomparability with respect to the triangular order

Emel Aşıcı, Funda Karaçal (2016)

Kybernetika

Similarity:

In this paper, we define the set of incomparable elements with respect to the triangular order for any t-norm on a bounded lattice. By means of the triangular order, an equivalence relation on the class of t-norms on a bounded lattice is defined and this equivalence is deeply investigated. Finally, we discuss some properties of this equivalence.