The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Erratum to ( δ , 2 ) -primary ideals of a commutative ring”

Fixed-place ideals in commutative rings

Ali Rezaei Aliabad, Mehdi Badie (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let I be a semi-prime ideal. Then P Min ( I ) is called irredundant with respect to I if I P P Min ( I ) P . If I is the intersection of all irredundant ideals with respect to I , it is called a fixed-place ideal. If there are no irredundant ideals with respect to I , it is called an anti fixed-place ideal. We show that each semi-prime ideal has a unique representation as an intersection of a fixed-place ideal and an anti fixed-place ideal. We say the point p β X is a fixed-place point if O p ( X ) is a fixed-place ideal. In...

Characterization of irreducible polynomials over a special principal ideal ring

Brahim Boudine (2023)

Mathematica Bohemica

Similarity:

A commutative ring R with unity is called a special principal ideal ring (SPIR) if it is a non integral principal ideal ring containing only one nonzero prime ideal, its length e is the index of nilpotency of its maximal ideal. In this paper, we show a characterization of irreducible polynomials over a SPIR of length 2 . Then, we give a sufficient condition for a polynomial to be irreducible over a SPIR of any length e .

On wsq-primary ideals

Emel Aslankarayiğit Uğurlu, El Mehdi Bouba, Ünsal Tekir, Suat Koç (2023)

Czechoslovak Mathematical Journal

Similarity:

We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let R be a commutative ring with a nonzero identity and Q a proper ideal of R . The proper ideal Q is said to be a weakly strongly quasi-primary ideal if whenever 0 a b Q for some a , b R , then a 2 Q or b Q . Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero...

The ideal (a) is not G δ generated

Marta Frankowska, Andrzej Nowik (2011)

Colloquium Mathematicae

Similarity:

We prove that the ideal (a) defined by the density topology is not G δ generated. This answers a question of Z. Grande and E. Strońska.

Intersections of essential minimal prime ideals

A. Taherifar (2014)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let 𝒵 ( ) be the set of zero divisor elements of a commutative ring R with identity and be the space of minimal prime ideals of R with Zariski topology. An ideal I of R is called strongly dense ideal or briefly s d -ideal if I 𝒵 ( ) and I is contained in no minimal prime ideal. We denote by R K ( ) , the set of all a R for which D ( a ) ¯ = V ( a ) ¯ is compact. We show that R has property ( A ) and is compact if and only if R has no s d -ideal. It is proved that R K ( ) is an essential ideal (resp., s d -ideal) if and only if is an almost...

Rings of continuous functions vanishing at infinity

Ali Rezaei Aliabad, F. Azarpanah, M. Namdari (2004)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that a Hausdorff space X is locally compact if and only if its topology coincides with the weak topology induced by C ( X ) . It is shown that for a Hausdorff space X , there exists a locally compact Hausdorff space Y such that C ( X ) C ( Y ) . It is also shown that for locally compact spaces X and Y , C ( X ) C ( Y ) if and only if X Y . Prime ideals in C ( X ) are uniquely represented by a class of prime ideals in C * ( X ) . -compact spaces are introduced and it turns out that a locally compact space X is -compact if and only...