Displaying similar documents to “On the stabilization of laminated beams with delay”

Global well-posedness and energy decay for a one dimensional porous-elastic system subject to a neutral delay

Houssem Eddine Khochemane, Sara Labidi, Sami Loucif, Abdelhak Djebabla (2025)

Mathematica Bohemica

Similarity:

We consider a one-dimensional porous-elastic system with porous-viscosity and a distributed delay of neutral type. First, we prove the global existence and uniqueness of the solution by using the Faedo-Galerkin approximations along with some energy estimates. Then, based on the energy method with some appropriate assumptions on the kernel of neutral delay term, we construct a suitable Lyapunov functional and we prove that, despite of the destructive nature of delays in general, the damping...

Global existence and energy decay of solutions to a Bresse system with delay terms

Abbes Benaissa, Mostefa Miloudi, Mokhtar Mokhtari (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We consider the Bresse system in bounded domain with delay terms in the internal feedbacks and prove the global existence of its solutions in Sobolev spaces by means of semigroup theory under a condition between the weight of the delay terms in the feedbacks and the weight of the terms without delay. Furthermore, we study the asymptotic behavior of solutions using multiplier method.

Characterization of shadowing for linear autonomous delay differential equations

Mihály Pituk, John Ioannis Stavroulakis (2025)

Czechoslovak Mathematical Journal

Similarity:

A well-known shadowing theorem for ordinary differential equations is generalized to delay differential equations. It is shown that a linear autonomous delay differential equation is shadowable if and only if its characteristic equation has no root on the imaginary axis. The proof is based on the decomposition theory of linear delay differential equations.

Stability result for a thermoelastic Bresse system with delay term in the internal feedback

Lamine Bouzettouta, Sabah Baibeche, Manel Abdelli, Amar Guesmia (2023)

Mathematica Bohemica

Similarity:

The studies considered here are concerend with a linear thermoelastic Bresse system with delay term in the feedback. The heat conduction is also given by Cattaneo's law. Under an appropriate assumption between the weight of the delay and the weight of the damping, we prove the well-posedness of the problem using the semigroup method. Furthermore, based on the energy method, we establish an exponential stability result depending of a condition on the constants of the system that was first...

Oscillation of delay differential equations

J. Džurina (1997)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

Our aim in this paper is to present the relationship between property (B) of the third order equation with delay argument y'''(t) - q(t)y(τ(t)) = 0 and the oscillation of the second order delay equation of the form y''(t) + p(t)y(τ(t)) = 0.

Delay differential systems with time-varying delay: new directions for stability theory

James Louisell (2001)

Kybernetika

Similarity:

In this paper we give an example of Markus–Yamabe instability in a constant coefficient delay differential equation with time-varying delay. For all values of the range of the delay function, the characteristic function of the associated autonomous delay equation is exponentially stable. Still, the fundamental solution of the time-varying system is unbounded. We also present a modified example having absolutely continuous delay function, easily calculating the average variation of the...

Delay-dependent asymptotic stabilitzation for uncertain time-delay systems with saturating actuators

Pin-Lin Liu (2005)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper concerns the issue of robust asymptotic stabilization for uncertain time-delay systems with saturating actuators. Delay-dependent criteria for robust stabilization via linear memoryless state feedback have been obtained. The resulting upper bound on the delay time is given in terms of the solution to a Riccati equation subject to model transformation. Finally, examples are presented to show the effectiveness of our result.