Stability result for a thermoelastic Bresse system with delay term in the internal feedback

Lamine Bouzettouta; Sabah Baibeche; Manel Abdelli; Amar Guesmia

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 3, page 409-434
  • ISSN: 0862-7959

Abstract

top
The studies considered here are concerend with a linear thermoelastic Bresse system with delay term in the feedback. The heat conduction is also given by Cattaneo's law. Under an appropriate assumption between the weight of the delay and the weight of the damping, we prove the well-posedness of the problem using the semigroup method. Furthermore, based on the energy method, we establish an exponential stability result depending of a condition on the constants of the system that was first considered by A. Keddi, T. Apalara, S. A. Messaoudi in 2018.

How to cite

top

Bouzettouta, Lamine, et al. "Stability result for a thermoelastic Bresse system with delay term in the internal feedback." Mathematica Bohemica 148.3 (2023): 409-434. <http://eudml.org/doc/299114>.

@article{Bouzettouta2023,
abstract = {The studies considered here are concerend with a linear thermoelastic Bresse system with delay term in the feedback. The heat conduction is also given by Cattaneo's law. Under an appropriate assumption between the weight of the delay and the weight of the damping, we prove the well-posedness of the problem using the semigroup method. Furthermore, based on the energy method, we establish an exponential stability result depending of a condition on the constants of the system that was first considered by A. Keddi, T. Apalara, S. A. Messaoudi in 2018.},
author = {Bouzettouta, Lamine, Baibeche, Sabah, Abdelli, Manel, Guesmia, Amar},
journal = {Mathematica Bohemica},
keywords = {Bresse system; delay; decay rate; energy method; semigroup method; thermoelastic},
language = {eng},
number = {3},
pages = {409-434},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stability result for a thermoelastic Bresse system with delay term in the internal feedback},
url = {http://eudml.org/doc/299114},
volume = {148},
year = {2023},
}

TY - JOUR
AU - Bouzettouta, Lamine
AU - Baibeche, Sabah
AU - Abdelli, Manel
AU - Guesmia, Amar
TI - Stability result for a thermoelastic Bresse system with delay term in the internal feedback
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 3
SP - 409
EP - 434
AB - The studies considered here are concerend with a linear thermoelastic Bresse system with delay term in the feedback. The heat conduction is also given by Cattaneo's law. Under an appropriate assumption between the weight of the delay and the weight of the damping, we prove the well-posedness of the problem using the semigroup method. Furthermore, based on the energy method, we establish an exponential stability result depending of a condition on the constants of the system that was first considered by A. Keddi, T. Apalara, S. A. Messaoudi in 2018.
LA - eng
KW - Bresse system; delay; decay rate; energy method; semigroup method; thermoelastic
UR - http://eudml.org/doc/299114
ER -

References

top
  1. Boussouira, F. Alabau, Rivera, J. E. Muñoz, Júnior, D. S. Almeida, 10.1016/j.jmaa.2010.07.046, J. Math. Anal. Appl. 374 (2011), 481-498. (2011) Zbl1209.35018MR2729236DOI10.1016/j.jmaa.2010.07.046
  2. Alves, M. O., Fatori, L. H., Silva, M. A. J., Monteiro, R. N., 10.1002/mma.3115, Math. Methods Appl. Sci. 38 (2015), 898-908. (2015) Zbl1316.35178MR3324487DOI10.1002/mma.3115
  3. Benaissa, A., Miloudi, M., Mokhtari, M., 10.14712/1213-7243.2015.116, Commentat. Math. Univ. Carol. 56 (2015), 169-186. (2015) Zbl1340.35198MR3338731DOI10.14712/1213-7243.2015.116
  4. Bouzettouta, L., Zitouni, S., Zennir, K., Guesmia, A., Stability of Bresse system with internal distributed delay, J. Math. Comput. Sci. 7 (2017), 92-118. (2017) 
  5. Bouzettouta, L., Zitouni, S., Zennir, K., Sissaoui, H., Well-posedness and decay of solutions to Bresse system with internal distributed delay, Int. J. Appl. Math. Stat. 56 (2017), 153-168. (2017) MR3620629
  6. Bresse, J. A. C., Cours de méchanique appliquée, Mallet Bachelier, Paris (1859), French. (1859) 
  7. Chen, G., 10.1137/0317007, SIAM J. Control Optim. 17 (1979), 66-81. (1979) Zbl0402.93016MR0516857DOI10.1137/0317007
  8. Chen, G., 10.1137/0319009, SIAM J. Control Optim. 19 (1981), 114-122. (1981) Zbl0461.93037MR0603084DOI10.1137/0319009
  9. Datko, R., Lagnese, J., Polis, M. P., 10.1137/0324007, SIAM J. Control Optim. 24 (1986), 152-156. (1986) Zbl0592.93047MR0818942DOI10.1137/0324007
  10. Fatori, L. H., Rivera, J. E. Muñoz, 10.1093/imamat/hxq038, IMA J. Appl. Math. 75 (2010), 881-904. (2010) Zbl1209.80005MR2740037DOI10.1093/imamat/hxq038
  11. Sare, H. D. Fernándes, Racke, R., 10.1007/s00205-009-0220-2, Arch. Ration. Mech. Anal. 194 (2009), 221-251. (2009) Zbl1251.74011MR2533927DOI10.1007/s00205-009-0220-2
  12. Gallego, F. A., Rivera, J. E. Muñoz, Decay rates for solutions to thermoelastic Bresse systems of types I and III, Electron. J. Differ. Equ. 2017 (2017), Article ID 73, 26 pages. (2017) Zbl1370.35046MR3651870
  13. Guesmia, A., Kafini, M., 10.1002/mma.3228, Math. Methods Appl. Sci. 38 (2015), 2389-2402. (2015) Zbl1317.35007MR3366806DOI10.1002/mma.3228
  14. Keddi, A. A., Apalara, T. A., Messaoudi, S. A., 10.1007/s00245-016-9376-y, Appl. Math. Optim. 77 (2018), 315-341. (2018) Zbl1388.35188MR3776342DOI10.1007/s00245-016-9376-y
  15. Kim, J. U., Renardy, Y., 10.1137/0325078, SIAM J. Control Optim. 25 (1987), 1417-1429. (1987) Zbl0632.93057MR0912448DOI10.1137/0325078
  16. Komornik, V., Exact Controllability and Stabilization: The Multiplier Method, Research in Applied Mathematics 36. John Wiley & Sons, Chichester (1994). (1994) Zbl0937.93003MR1359765
  17. Liu, Z., Rao, B., 10.1007/s00033-008-6122-6, Z. Angew. Math. Phys. 60 (2009), 54-69. (2009) Zbl1161.74030MR2469727DOI10.1007/s00033-008-6122-6
  18. Liu, Z., Zheng, S., Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC Research Notes in Mathematics 398. Chapman & Hall/CRC, Boca Raton (1999). (1999) Zbl0924.73003MR1681343
  19. Messaoudi, S. A., Mustafa, M. I., 10.1007/s00030-008-7075-3, NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 655-671. (2008) Zbl1163.74037MR2465776DOI10.1007/s00030-008-7075-3
  20. Messaoudi, S. A., Mustafa, M. I., 10.1002/mma.1047, Math. Methods Appl. Sci. 32 (2009), 454-469. (2009) Zbl1171.35014MR2493590DOI10.1002/mma.1047
  21. Rivera, J. E. Munõz, Racke, R., 10.3934/dcds.2003.9.1625, Discrete Contin. Dyn. Syst. 9 (2003), 1625-1639. (2003) Zbl1047.35023MR2017685DOI10.3934/dcds.2003.9.1625
  22. Mustafa, M. I., 10.1016/j.jmaa.2014.01.080, J. Math. Anal. Appl. 415 (2014), 148-158. (2014) Zbl1310.74006MR3173160DOI10.1016/j.jmaa.2014.01.080
  23. Mustafa, M. I., Kafini, M., Exponential decay in thermoelastic systems with internal distributed delay, Palest. J. Math. 2 (2013), 287-299. (2013) Zbl1343.93066MR3109903
  24. Nakao, M., 10.1016/0022-247X(77)90040-3, J. Math. Anal. Appl. 60 (1977), 542-549. (1977) Zbl0376.34051MR0499564DOI10.1016/0022-247X(77)90040-3
  25. Nicaise, S., Pignotti, C., 10.1137/060648891, SIAM J. Control Optim. 45 (2006), 1561-1585. (2006) Zbl1180.35095MR2272156DOI10.1137/060648891
  26. Nicaise, S., Pignotti, C., Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integral Equ. 21 (2008), 935-958. (2008) Zbl1224.35247MR2483342
  27. Ouchnane, D., 10.1515/gmj-2014-0045, Georgian Math. J. 21 (2014), 475-489. (2014) Zbl1304.35103MR3284711DOI10.1515/gmj-2014-0045
  28. Park, J.-H., Kang, J.-R., 10.1093/imamat/hxq040, IMA J. Appl. Math. 76 (2011), 340-350. (2011) Zbl1219.35311MR2781698DOI10.1093/imamat/hxq040
  29. Pazy, A., 10.1007/978-1-4612-5561-1, Applied Mathematical Sciences 44. Springer, New York (1983). (1983) Zbl0516.47023MR0710486DOI10.1007/978-1-4612-5561-1
  30. Raposo, C. A., Ferreira, J., Santos, M. L., Castro, N. N. O., 10.1016/j.aml.2004.03.017, Appl. Math. Lett. 18 (2005), 535-541. (2005) Zbl1072.74033MR2127817DOI10.1016/j.aml.2004.03.017
  31. Santos, M. L., Soufyane, A., Júnior, D. S. Almeida, 10.1090/S0033-569X-2014-01382-4, Q. Appl. Math. 73 (2015), 23-54. (2015) Zbl1308.74066MR3322725DOI10.1090/S0033-569X-2014-01382-4
  32. Soriano, J. A., Rivera, J. E. Muñoz, Fatori, L. H., 10.1016/j.jmaa.2011.08.072, J. Math. Anal. Appl. 387 (2012), 284-290. (2012) Zbl1231.35113MR2845750DOI10.1016/j.jmaa.2011.08.072
  33. Timoshenko, S. P., 10.1080/14786442108636264, Phil. Mag. (6) 41 (1921), 744-746. (1921) DOI10.1080/14786442108636264
  34. Wehbe, A., Youssef, W., 10.1063/1.3486094, J. Math. Phys. 51 (2010), Article ID 103523, 17 pages. (2010) Zbl1314.74035MR2761337DOI10.1063/1.3486094
  35. Xu, C. Q., Yung, S. P., Li, L. K., 10.1051/cocv:2006021, ESAIM, Control Optim. Calc. Var. 12 (2006), 770-785. (2006) Zbl1105.35016MR2266817DOI10.1051/cocv:2006021
  36. Zitouni, S., Bouzettouta, L., Zennir, K., Ouchenane, D., 10.15672/hjms.2017.498, Hacet. J. Math. Stat. 47 (2018), 1216-1230. (2018) Zbl07406314MR3974506DOI10.15672/hjms.2017.498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.