Stability result for a thermoelastic Bresse system with delay term in the internal feedback
Lamine Bouzettouta; Sabah Baibeche; Manel Abdelli; Amar Guesmia
Mathematica Bohemica (2023)
- Volume: 148, Issue: 3, page 409-434
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBouzettouta, Lamine, et al. "Stability result for a thermoelastic Bresse system with delay term in the internal feedback." Mathematica Bohemica 148.3 (2023): 409-434. <http://eudml.org/doc/299114>.
@article{Bouzettouta2023,
abstract = {The studies considered here are concerend with a linear thermoelastic Bresse system with delay term in the feedback. The heat conduction is also given by Cattaneo's law. Under an appropriate assumption between the weight of the delay and the weight of the damping, we prove the well-posedness of the problem using the semigroup method. Furthermore, based on the energy method, we establish an exponential stability result depending of a condition on the constants of the system that was first considered by A. Keddi, T. Apalara, S. A. Messaoudi in 2018.},
author = {Bouzettouta, Lamine, Baibeche, Sabah, Abdelli, Manel, Guesmia, Amar},
journal = {Mathematica Bohemica},
keywords = {Bresse system; delay; decay rate; energy method; semigroup method; thermoelastic},
language = {eng},
number = {3},
pages = {409-434},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stability result for a thermoelastic Bresse system with delay term in the internal feedback},
url = {http://eudml.org/doc/299114},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Bouzettouta, Lamine
AU - Baibeche, Sabah
AU - Abdelli, Manel
AU - Guesmia, Amar
TI - Stability result for a thermoelastic Bresse system with delay term in the internal feedback
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 3
SP - 409
EP - 434
AB - The studies considered here are concerend with a linear thermoelastic Bresse system with delay term in the feedback. The heat conduction is also given by Cattaneo's law. Under an appropriate assumption between the weight of the delay and the weight of the damping, we prove the well-posedness of the problem using the semigroup method. Furthermore, based on the energy method, we establish an exponential stability result depending of a condition on the constants of the system that was first considered by A. Keddi, T. Apalara, S. A. Messaoudi in 2018.
LA - eng
KW - Bresse system; delay; decay rate; energy method; semigroup method; thermoelastic
UR - http://eudml.org/doc/299114
ER -
References
top- Boussouira, F. Alabau, Rivera, J. E. Muñoz, Júnior, D. S. Almeida, 10.1016/j.jmaa.2010.07.046, J. Math. Anal. Appl. 374 (2011), 481-498. (2011) Zbl1209.35018MR2729236DOI10.1016/j.jmaa.2010.07.046
- Alves, M. O., Fatori, L. H., Silva, M. A. J., Monteiro, R. N., 10.1002/mma.3115, Math. Methods Appl. Sci. 38 (2015), 898-908. (2015) Zbl1316.35178MR3324487DOI10.1002/mma.3115
- Benaissa, A., Miloudi, M., Mokhtari, M., 10.14712/1213-7243.2015.116, Commentat. Math. Univ. Carol. 56 (2015), 169-186. (2015) Zbl1340.35198MR3338731DOI10.14712/1213-7243.2015.116
- Bouzettouta, L., Zitouni, S., Zennir, K., Guesmia, A., Stability of Bresse system with internal distributed delay, J. Math. Comput. Sci. 7 (2017), 92-118. (2017)
- Bouzettouta, L., Zitouni, S., Zennir, K., Sissaoui, H., Well-posedness and decay of solutions to Bresse system with internal distributed delay, Int. J. Appl. Math. Stat. 56 (2017), 153-168. (2017) MR3620629
- Bresse, J. A. C., Cours de méchanique appliquée, Mallet Bachelier, Paris (1859), French. (1859)
- Chen, G., 10.1137/0317007, SIAM J. Control Optim. 17 (1979), 66-81. (1979) Zbl0402.93016MR0516857DOI10.1137/0317007
- Chen, G., 10.1137/0319009, SIAM J. Control Optim. 19 (1981), 114-122. (1981) Zbl0461.93037MR0603084DOI10.1137/0319009
- Datko, R., Lagnese, J., Polis, M. P., 10.1137/0324007, SIAM J. Control Optim. 24 (1986), 152-156. (1986) Zbl0592.93047MR0818942DOI10.1137/0324007
- Fatori, L. H., Rivera, J. E. Muñoz, 10.1093/imamat/hxq038, IMA J. Appl. Math. 75 (2010), 881-904. (2010) Zbl1209.80005MR2740037DOI10.1093/imamat/hxq038
- Sare, H. D. Fernándes, Racke, R., 10.1007/s00205-009-0220-2, Arch. Ration. Mech. Anal. 194 (2009), 221-251. (2009) Zbl1251.74011MR2533927DOI10.1007/s00205-009-0220-2
- Gallego, F. A., Rivera, J. E. Muñoz, Decay rates for solutions to thermoelastic Bresse systems of types I and III, Electron. J. Differ. Equ. 2017 (2017), Article ID 73, 26 pages. (2017) Zbl1370.35046MR3651870
- Guesmia, A., Kafini, M., 10.1002/mma.3228, Math. Methods Appl. Sci. 38 (2015), 2389-2402. (2015) Zbl1317.35007MR3366806DOI10.1002/mma.3228
- Keddi, A. A., Apalara, T. A., Messaoudi, S. A., 10.1007/s00245-016-9376-y, Appl. Math. Optim. 77 (2018), 315-341. (2018) Zbl1388.35188MR3776342DOI10.1007/s00245-016-9376-y
- Kim, J. U., Renardy, Y., 10.1137/0325078, SIAM J. Control Optim. 25 (1987), 1417-1429. (1987) Zbl0632.93057MR0912448DOI10.1137/0325078
- Komornik, V., Exact Controllability and Stabilization: The Multiplier Method, Research in Applied Mathematics 36. John Wiley & Sons, Chichester (1994). (1994) Zbl0937.93003MR1359765
- Liu, Z., Rao, B., 10.1007/s00033-008-6122-6, Z. Angew. Math. Phys. 60 (2009), 54-69. (2009) Zbl1161.74030MR2469727DOI10.1007/s00033-008-6122-6
- Liu, Z., Zheng, S., Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC Research Notes in Mathematics 398. Chapman & Hall/CRC, Boca Raton (1999). (1999) Zbl0924.73003MR1681343
- Messaoudi, S. A., Mustafa, M. I., 10.1007/s00030-008-7075-3, NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 655-671. (2008) Zbl1163.74037MR2465776DOI10.1007/s00030-008-7075-3
- Messaoudi, S. A., Mustafa, M. I., 10.1002/mma.1047, Math. Methods Appl. Sci. 32 (2009), 454-469. (2009) Zbl1171.35014MR2493590DOI10.1002/mma.1047
- Rivera, J. E. Munõz, Racke, R., 10.3934/dcds.2003.9.1625, Discrete Contin. Dyn. Syst. 9 (2003), 1625-1639. (2003) Zbl1047.35023MR2017685DOI10.3934/dcds.2003.9.1625
- Mustafa, M. I., 10.1016/j.jmaa.2014.01.080, J. Math. Anal. Appl. 415 (2014), 148-158. (2014) Zbl1310.74006MR3173160DOI10.1016/j.jmaa.2014.01.080
- Mustafa, M. I., Kafini, M., Exponential decay in thermoelastic systems with internal distributed delay, Palest. J. Math. 2 (2013), 287-299. (2013) Zbl1343.93066MR3109903
- Nakao, M., 10.1016/0022-247X(77)90040-3, J. Math. Anal. Appl. 60 (1977), 542-549. (1977) Zbl0376.34051MR0499564DOI10.1016/0022-247X(77)90040-3
- Nicaise, S., Pignotti, C., 10.1137/060648891, SIAM J. Control Optim. 45 (2006), 1561-1585. (2006) Zbl1180.35095MR2272156DOI10.1137/060648891
- Nicaise, S., Pignotti, C., Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integral Equ. 21 (2008), 935-958. (2008) Zbl1224.35247MR2483342
- Ouchnane, D., 10.1515/gmj-2014-0045, Georgian Math. J. 21 (2014), 475-489. (2014) Zbl1304.35103MR3284711DOI10.1515/gmj-2014-0045
- Park, J.-H., Kang, J.-R., 10.1093/imamat/hxq040, IMA J. Appl. Math. 76 (2011), 340-350. (2011) Zbl1219.35311MR2781698DOI10.1093/imamat/hxq040
- Pazy, A., 10.1007/978-1-4612-5561-1, Applied Mathematical Sciences 44. Springer, New York (1983). (1983) Zbl0516.47023MR0710486DOI10.1007/978-1-4612-5561-1
- Raposo, C. A., Ferreira, J., Santos, M. L., Castro, N. N. O., 10.1016/j.aml.2004.03.017, Appl. Math. Lett. 18 (2005), 535-541. (2005) Zbl1072.74033MR2127817DOI10.1016/j.aml.2004.03.017
- Santos, M. L., Soufyane, A., Júnior, D. S. Almeida, 10.1090/S0033-569X-2014-01382-4, Q. Appl. Math. 73 (2015), 23-54. (2015) Zbl1308.74066MR3322725DOI10.1090/S0033-569X-2014-01382-4
- Soriano, J. A., Rivera, J. E. Muñoz, Fatori, L. H., 10.1016/j.jmaa.2011.08.072, J. Math. Anal. Appl. 387 (2012), 284-290. (2012) Zbl1231.35113MR2845750DOI10.1016/j.jmaa.2011.08.072
- Timoshenko, S. P., 10.1080/14786442108636264, Phil. Mag. (6) 41 (1921), 744-746. (1921) DOI10.1080/14786442108636264
- Wehbe, A., Youssef, W., 10.1063/1.3486094, J. Math. Phys. 51 (2010), Article ID 103523, 17 pages. (2010) Zbl1314.74035MR2761337DOI10.1063/1.3486094
- Xu, C. Q., Yung, S. P., Li, L. K., 10.1051/cocv:2006021, ESAIM, Control Optim. Calc. Var. 12 (2006), 770-785. (2006) Zbl1105.35016MR2266817DOI10.1051/cocv:2006021
- Zitouni, S., Bouzettouta, L., Zennir, K., Ouchenane, D., 10.15672/hjms.2017.498, Hacet. J. Math. Stat. 47 (2018), 1216-1230. (2018) Zbl07406314MR3974506DOI10.15672/hjms.2017.498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.