Combined Finite Element and Spectral Approximation of the Navier-Stokes Equations.
Y. Maday, A. Quarteroni, C. Canuto (1984)
Numerische Mathematik
Similarity:
Y. Maday, A. Quarteroni, C. Canuto (1984)
Numerische Mathematik
Similarity:
Hanek, Martin, Šístek, Jakub, Burda, Pavel
Similarity:
We deal with numerical simulation of incompressible flow governed by the Navier-Stokes equations. The problem is discretised using the finite element method, and the arising system of nonlinear equations is solved by Picard iteration. We explore the applicability of the Balancing Domain Decomposition by Constraints (BDDC) method to nonsymmetric problems arising from such linearisation. One step of BDDC is applied as the preconditioner for the stabilized variant of the biconjugate gradient...
Saks, R.S. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Marzia Bisi, Laurent Desvillettes (2014)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
We present in this paper the formal passage from a kinetic model to the incompressible Navier−Stokes equations for a mixture of monoatomic gases with different masses. The starting point of this derivation is the collection of coupled Boltzmann equations for the mixture of gases. The diffusion coefficients for the concentrations of the species, as well as the ones appearing in the equations for velocity and temperature, are explicitly computed under the Maxwell molecule assumption in...
Burda, Pavel, Novotný, Jaroslav, Šístek, Jakub
Similarity:
We present analytical solution of the Stokes problem in 2D domains. This is then used to find the asymptotic behavior of the solution in the vicinity of corners, also for Navier-Stokes equations in 2D. We apply this to construct very precise numerical finite element solution.
M. Pulvirenti (2008)
Bollettino dell'Unione Matematica Italiana
Similarity:
This talk, based on a research in collaboration with E. Caglioti and F.Rousset, deals with a modified version of the two-dimensional Navier-Stokes equation wich preserves energy and momentum of inertia. Such a new equation is motivated by the occurrence of different dissipation time scales. It is also related to the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics.
R. H. Dyer, D. E. Edmunds (1971)
Colloquium Mathematicae
Similarity:
Rainer Picard (2008)
Banach Center Publications
Similarity:
The classical Stokes system is reconsidered and reformulated in a functional analytical setting allowing for low regularity of the data and the boundary. In fact the underlying domain can be any non-empty open subset Ω of ℝ³. A suitable solution concept and a corresponding solution theory is developed.
Michael Wiegner (2003)
Banach Center Publications
Similarity:
Pech, Jan
Similarity:
The scheme for the numerical solution of the incompressible Navier-Stokes equations coupled with the equation for temperature through the temperature dependent viscosity and thermal conductivity coefficients is presented. It is applied, together with the spectral element method, to the 2D calculations of flow around heated cylinder. High order polynomial approximation is combined with the decomposition of whole computational domain to only a few elements. Resulting data are compared...