The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The relation between the number of leaves of a tree and its diameter”

On a characterization of k -trees

De-Yan Zeng, Jian Hua Yin (2015)

Czechoslovak Mathematical Journal

Similarity:

A graph G is a k -tree if either G is the complete graph on k + 1 vertices, or G has a vertex v whose neighborhood is a clique of order k and the graph obtained by removing v from G is also a k -tree. Clearly, a k -tree has at least k + 1 vertices, and G is a 1-tree (usual tree) if and only if it is a 1 -connected graph and has no K 3 -minor. In this paper, motivated by some properties of 2-trees, we obtain a characterization of k -trees as follows: if G is a graph with at least k + 1 vertices, then G is...

Spanning trees whose reducible stems have a few branch vertices

Pham Hoang Ha, Dang Dinh Hanh, Nguyen Thanh Loan, Ngoc Diep Pham (2021)

Czechoslovak Mathematical Journal

Similarity:

Let T be a tree. Then a vertex of T with degree one is a leaf of T and a vertex of degree at least three is a branch vertex of T . The set of leaves of T is denoted by L ( T ) and the set of branch vertices of T is denoted by B ( T ) . For two distinct vertices u , v of T , let P T [ u , v ] denote the unique path in T connecting u and v . Let T be a tree with B ( T ) . For each leaf x of T , let y x denote the nearest branch vertex to x . We delete V ( P T [ x , y x ] ) { y x } from T for all x L ( T ) . The resulting subtree of T is called the reducible stem...

A lower bound for the 3-pendant tree-connectivity of lexicographic product graphs

Yaping Mao, Christopher Melekian, Eddie Cheng (2023)

Czechoslovak Mathematical Journal

Similarity:

For a connected graph G = ( V , E ) and a set S V ( G ) with at least two vertices, an S -Steiner tree is a subgraph T = ( V ' , E ' ) of G that is a tree with S V ' . If the degree of each vertex of S in T is equal to 1, then T is called a pendant S -Steiner tree. Two S -Steiner trees are if they share no vertices other than S and have no edges in common. For S V ( G ) and | S | 2 , the pendant tree-connectivity τ G ( S ) is the maximum number of internally disjoint pendant S -Steiner trees in G , and for k 2 , the k -pendant tree-connectivity τ k ( G ) is the...

On graceful colorings of trees

Sean English, Ping Zhang (2017)

Mathematica Bohemica

Similarity:

A proper coloring c : V ( G ) { 1 , 2 , ... , k } , k 2 of a graph G is called a graceful k -coloring if the induced edge coloring c ' : E ( G ) { 1 , 2 , ... , k - 1 } defined by c ' ( u v ) = | c ( u ) - c ( v ) | for each edge u v of G is also proper. The minimum integer k for which G has a graceful k -coloring is the graceful chromatic number χ g ( G ) . It is known that if T is a tree with maximum degree Δ , then χ g ( T ) 5 3 Δ and this bound is best possible. It is shown for each integer Δ 2 that there is an infinite class of trees T with maximum degree Δ such that χ g ( T ) = 5 3 Δ . In particular, we investigate for each...

Distance matrices perturbed by Laplacians

Balaji Ramamurthy, Ravindra Bhalchandra Bapat, Shivani Goel (2020)

Applications of Mathematics

Similarity:

Let T be a tree with n vertices. To each edge of T we assign a weight which is a positive definite matrix of some fixed order, say, s . Let D i j denote the sum of all the weights lying in the path connecting the vertices i and j of T . We now say that D i j is the distance between i and j . Define D : = [ D i j ] , where D i i is the s × s null matrix and for i j , D i j is the distance between i and j . Let G be an arbitrary connected weighted graph with n vertices, where each weight is a positive definite matrix of order...

On path-quasar Ramsey numbers

Binlong Li, Bo Ning (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let G 1 and G 2 be two given graphs. The Ramsey number R ( G 1 , G 2 ) is the least integer r such that for every graph G on r vertices, either G contains a G 1 or G ¯ contains a G 2 . Parsons gave a recursive formula to determine the values of R ( P n , K 1 , m ) , where P n is a path on n vertices and K 1 , m is a star on m + 1 vertices. In this note, we study the Ramsey numbers R ( P n , K 1 F m ) , where F m is a linear forest on m vertices. We determine the exact values of R ( P n , K 1 F m ) for the cases m n and m 2 n , and for the case that F m has no odd component. Moreover, we...