Displaying similar documents to “An inequality for Fibonacci numbers”

Gelin-Cesáro identities for Fibonacci and Lucas quaternions

Ahmet Daşdemir (2019)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

To date, many identities of different quaternions, including the Fibonacci and Lucas quaternions, have been investigated. In this study, we present Gelin-Cesáro identities for Fibonacci and Lucas quaternions. The identities are a worthy addition to the literature. Moreover, we give Catalan's identity for the Lucas quaternions.

Binomials transformation formulae for scaled Fibonacci numbers

Edyta Hetmaniok, Bożena Piątek, Roman Wituła (2017)

Open Mathematics

Similarity:

The aim of the paper is to present the binomial transformation formulae of Fibonacci numbers scaled by complex multipliers. Many of these new and nontrivial relations follow from the fundamental properties of the so-called delta-Fibonacci numbers defined by Wituła and Słota. The paper contains some original relations connecting the values of delta-Fibonacci numbers with the respective values of Chebyshev polynomials of the first and second kind.

Determinants and inverses of circulant matrices with complex Fibonacci numbers

Ercan Altınışık, N. Feyza Yalçın, Şerife Büyükköse (2015)

Special Matrices

Similarity:

Let ℱn = circ (︀F*1 , F*2, . . . , F*n︀ be the n×n circulant matrix associated with complex Fibonacci numbers F*1, F*2, . . . , F*n. In the present paper we calculate the determinant of ℱn in terms of complex Fibonacci numbers. Furthermore, we show that ℱn is invertible and obtain the entries of the inverse of ℱn in terms of complex Fibonacci numbers.

On terms of linear recurrence sequences with only one distinct block of digits

Diego Marques, Alain Togbé (2011)

Colloquium Mathematicae

Similarity:

In 2000, Florian Luca proved that F₁₀ = 55 and L₅ = 11 are the largest numbers with only one distinct digit in the Fibonacci and Lucas sequences, respectively. In this paper, we find terms of a linear recurrence sequence with only one block of digits in its expansion in base g ≥ 2. As an application, we generalize Luca's result by finding the Fibonacci and Lucas numbers with only one distinct block of digits of length up to 10 in its decimal expansion.

On useful schema in survival analysis after heart attack

Czesław Stępniak (2014)

Discussiones Mathematicae Probability and Statistics

Similarity:

Recent model of lifetime after a heart attack involves some integer coefficients. Our goal is to get these coefficients in simple way and transparent form. To this aim we construct a schema according to a rule which combines the ideas used in the Pascal triangle and the generalized Fibonacci and Lucas numbers

On the arrowhead-Fibonacci numbers

Inci Gültekin, Ömür Deveci (2016)

Open Mathematics

Similarity:

In this paper, we define the arrowhead-Fibonacci numbers by using the arrowhead matrix of the characteristic polynomial of the k-step Fibonacci sequence and then we give some of their properties. Also, we study the arrowhead-Fibonacci sequence modulo m and we obtain the cyclic groups from the generating matrix of the arrowhead-Fibonacci numbers when read modulo m. Then we derive the relationships between the orders of the cyclic groups obtained and the periods of the arrowhead-Fibonacci...

Fibonacci Numbers with the Lehmer Property

Florian Luca (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We show that if m > 1 is a Fibonacci number such that ϕ(m) | m-1, where ϕ is the Euler function, then m is prime

On Balancing and Lucas-balancing Quaternions

Bijan Kumar Patel, Prasanta Kumar Ray (2021)

Communications in Mathematics

Similarity:

The aim of this article is to investigate two new classes of quaternions, namely, balancing and Lucas-balancing quaternions that are based on balancing and Lucas-balancing numbers, respectively. Further, some identities including Binet's formulas, summation formulas, Catalan's identity, etc. concerning these quaternions are also established.

The Geometric and Dynamic Essence of Phyllotaxis

P. Atela (2011)

Mathematical Modelling of Natural Phenomena

Similarity:

We present a dynamic geometric model of phyllotaxis based on two postulates, primordia formation and meristem expansion. We find that Fibonacci, Lucas, bijugate and multijugate are all variations of the same unifying phenomenon and that the difference lies in the changes in position of initial primordia. We explore the set of all initial positions and color-code its points depending on the phyllotactic pattern that arises.

The positivity problem for fourth order linear recurrence sequences is decidable

Pinthira Tangsupphathawat, Narong Punnim, Vichian Laohakosol (2012)

Colloquium Mathematicae

Similarity:

The problem whether each element of a sequence satisfying a fourth order linear recurrence with integer coefficients is nonnegative, referred to as the Positivity Problem for fourth order linear recurrence sequence, is shown to be decidable.