Displaying similar documents to “An unconditionally stable finite element scheme for anisotropic curve shortening flow”

A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil

François Beux, Maria-Vittoria Salvetti, Alexey Ignatyev, Ding Li, Charles Merkle, Edoardo Sinibaldi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The results of a workshop concerning the numerical simulation of the liquid flow around a hydrofoil in non-cavitating and cavitating conditions are presented. This workshop was part of the conference “Mathematical and Numerical aspects of Low Mach Number Flows” (2004) and was aimed to investigate the capabilities of different compressible flow solvers for the low Mach number regime and for flows in which incompressible and supersonic regions are simultaneously present. Different physical...

Hydromagnetic stability of stratified shear flows in the presence of cross flow

Naresh Kumar Dua, Hari Kishan, Ruchi Goel (2011)

Annales Polonici Mathematici

Similarity:

The hydromagnetic stability of stratified shear flows in the presence of cross flows is discussed. The magnetic field is applied in the direction of the main flow. Some necessary conditions of instability, the growth rate of unstable modes and reduction of the unstable region are discussed.

Numerical solution of inviscid incompressible flow in a channel with dynamical effects

Honzátko, Radek, Horáček, Jaromír, Kozel, Karel

Similarity:

Numerical solution of unsteady 2D inviscid incompressible flows described by Euler equations over the vibrating profile NACA 0012 in a channel is studied. The finite volume method (FVM) and a higher order cell-centered scheme with an artificial dissipation at a qudrilateral C-mesh is used. The method of artificial compressibility and the time dependent method are used for steady state solutions. Numerical results are compared with experimental data.

A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil

François Beux, Maria-Vittoria Salvetti, Alexey Ignatyev, Ding Li, Charles Merkle, Edoardo Sinibaldi (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The results of a workshop concerning the numerical simulation of the liquid flow around a hydrofoil in non-cavitating and cavitating conditions are presented. This workshop was part of the conference “Mathematical and Numerical aspects of Low Mach Number Flows” (2004) and was aimed to investigate the capabilities of different compressible flow solvers for the low Mach number regime and for flows in which incompressible and supersonic regions are simultaneously present. Different physical...

Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations

Noel J. Walkington (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Numerical approximation of the flow of liquid crystals governed by the Ericksen-Leslie equations is considered. Care is taken to develop numerical schemes which inherit the Hamiltonian structure of these equations and associated stability properties. For a large class of material parameters compactness of the discrete solutions is established which guarantees convergence.

Numerical Modeling of the Stream Dynamics for River Channels with Complex Spatial Configuration

V. A. Shlychkov (2009)

Mathematical Modelling of Natural Phenomena

Similarity:

Mathematical modeling provides a particularly important tool for studying the stream runoff formation processes, and its role is enhanced in the case of a sparse, obsolete monitoring network characteristic of most regions of Siberia. When analyzing spatio-temporal regularities of the water and sediment runoff in river systems, serious problems are caused by lack of the basic hydrological model capable of handling real-time data of hydrological measurements.
Calculations of unsteady...

The numerical solution of compressible flows in time dependent domains

Kučera, Václav, Česenek, Jan

Similarity:

This work is concerned with the numerical solution of inviscid compressible fluid flow in moving domains. Specifically, we assume that the boundary part of the domain (impermeable walls) are time dependent. We consider the Euler equations, which describe the movement of inviscid compressible fluids. We present two formulations of the Euler equations in the ALE (Arbitrary Lagrangian-Eulerian) form. These two formulations are discretized in space by the discontinuous Galerkin method....