Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations

Noel J. Walkington

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2011)

  • Volume: 45, Issue: 3, page 523-540
  • ISSN: 0764-583X

Abstract

top
Numerical approximation of the flow of liquid crystals governed by the Ericksen-Leslie equations is considered. Care is taken to develop numerical schemes which inherit the Hamiltonian structure of these equations and associated stability properties. For a large class of material parameters compactness of the discrete solutions is established which guarantees convergence.

How to cite

top

Walkington, Noel J.. "Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 45.3 (2011): 523-540. <http://eudml.org/doc/273167>.

@article{Walkington2011,
abstract = {Numerical approximation of the flow of liquid crystals governed by the Ericksen-Leslie equations is considered. Care is taken to develop numerical schemes which inherit the Hamiltonian structure of these equations and associated stability properties. For a large class of material parameters compactness of the discrete solutions is established which guarantees convergence.},
author = {Walkington, Noel J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {liquid crystal; Ericksen-Leslie equations; numerical approximation; ericksen-Leslie equations},
language = {eng},
number = {3},
pages = {523-540},
publisher = {EDP-Sciences},
title = {Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations},
url = {http://eudml.org/doc/273167},
volume = {45},
year = {2011},
}

TY - JOUR
AU - Walkington, Noel J.
TI - Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2011
PB - EDP-Sciences
VL - 45
IS - 3
SP - 523
EP - 540
AB - Numerical approximation of the flow of liquid crystals governed by the Ericksen-Leslie equations is considered. Care is taken to develop numerical schemes which inherit the Hamiltonian structure of these equations and associated stability properties. For a large class of material parameters compactness of the discrete solutions is established which guarantees convergence.
LA - eng
KW - liquid crystal; Ericksen-Leslie equations; numerical approximation; ericksen-Leslie equations
UR - http://eudml.org/doc/273167
ER -

References

top
  1. [1] L. Baňas, A. Prohl and R. Schätzle, Finite element approximations of harmonic map heat flows and wave map into spheres of nonconstant radii. Numer. Math.115 (2010) 395–432. Zbl1203.65174MR2640052
  2. [2] J.W. Barrett, X. Feng and A. Prohl, Convergence of a fully discrete finite element method for a degenerate parabolic system modelling nematic liquid crystals with variable degree of orientation. Math. Model. Numer. Anal.40 (2006) 175–199. Zbl1097.35082MR2223509
  3. [3] R. Becker, X. Feng and A. Prohl, Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow. SIAM J. Numer. Anal.46 (2008) 1704–1731. Zbl1187.82130MR2399392
  4. [4] F. Bethuel, H. Brezis and F. Helein, Ginzburg-Landau Vorticies. Kluwer (1995). Zbl0802.35142MR1269538
  5. [5] R. Cohen, R. Hardt, D. Kinderlehrer, S. Lin and M. Luskin, Minimum energy configurations for liquid crystals: Computational results, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer Eds., The IMA Volumes in Mathematics and its Applications 5, Springer-Verlag, New York (1987). Zbl0713.76006MR900831
  6. [6] Q. Du, B. Guo and J. Shen, Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals. SIAM J. Numer. Anal.39 (2001) 735–762. Zbl1007.76057MR1860443
  7. [7] F. Duzaar, J. Kristensen and G. Mingione, The existence of regular boundary points for non-linear elliptic systems. J. Reine Angew. Math.602 (2007) 17–58. Zbl1214.35021MR2300451
  8. [8] J. Ericksen, Conservation laws for liquid crystals. Trans. Soc. Rheol.5 (1961) 22–34. MR158610
  9. [9] J. Ericksen, Nilpotent energies in liquid crystal theory. Arch. Rational Mech. Anal.10 (1962) 189–196. Zbl0109.23002MR169513
  10. [10] J. Ericksen, Continuum theory of nematic liquid crystals. Res. Mechanica21 (1987) 381–392. 
  11. [11] F.C. Frank, On the theory of liquid crystals. Discuss. Faraday Soc.25 (1958) 19–28. 
  12. [12] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations I: Linearized steady problems, Springer Tracts in Natural Philosophy 38. Springer-Verlag, New York (1994). Zbl0949.35004MR1284205
  13. [13] V. Girault and F. Guillén-González, Mixed formulation, approximation and decoupling algorithm for a penalized nematic liquid crystals model. Preprint (2009). Zbl1228.35176
  14. [14] V. Girault, R.H. Nochetto and R. Scott, Maximum-norm stability of the finite element Stokes projection. J. Math. Pures Appl.84 (2005) 279–330. Zbl1210.76051MR2121575
  15. [15] R. Hardt and D. Kinderlehrer, Mathematical questions of liquid crystal theory, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer Eds., The IMA Volumes in Mathematics and its Applications 5, Springer-Verlag, New York (1987). Zbl0713.76006MR900833
  16. [16] R. Hardt and F.H. Lin, Stability of singularities of minimizing harmonic maps. J. Differential Geom.29 (1989) 113–123. Zbl0673.58016MR978080
  17. [17] R. Hardt, D. Kinderlehrer and F.H. Lin, Existence and partial regularity of static liquid crystal configurations. Comm. Math. Phys.105 (1986) 547–570. Zbl0611.35077MR852090
  18. [18] Q. Hu, X.-C. Tai and R. Winther, A saddle point approach to the computation of harmonic maps. SIAM J. Numer. Anal.47 (2009) 1500–1523. Zbl1219.49030MR2497338
  19. [19] R. Jerard and M. Soner, Dynamics of Ginzburg-Landau vortices. Arch. Rational Mech. Anal.142 (1998) 99–125. Zbl0923.35167MR1629646
  20. [20] F. Leslie, Some constitutive equations for liquid crystals. Arch. Rational Mech. Anal.28 (1968) 265–283. Zbl0159.57101MR1553506
  21. [21] F. Leslie, Theory of flow phenomenum in liquid crystals, in The Theory of Liquid Crystals 4, W. Brown Ed., Academic Press, New York (1979) 1–81. 
  22. [22] F.H. Lin, Mathematics theory of liquid crystals, in Applied Mathematics At The Turn Of Century: Lecture notes of the 1993 summer school, Universidat Complutense de Madrid (1995). 
  23. [23] F.H. Lin, Solutions of Ginzburg-Landau equations and critical points of renormalized energy. Ann. Inst. H. Poincaré Anal. Non Linéaire12 (1995) 599–622. Zbl0845.35052MR1353261
  24. [24] F.H. Lin, Some dynamic properties of Ginzburg-Landau vorticies. Comm. Pure Appl. Math.49 (1996) 323–359. Zbl0853.35058MR1376654
  25. [25] F.H. Lin and C. Liu, Nonparabolic dissipative systems, modeling the flow of liquid crystals. Comm. Pure Appl. Math. XLVIII (1995) 501–537. Zbl0842.35084MR1329830
  26. [26] F.H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system. Arch. Rational Mech. Anal.154 (2000) 135–156. Zbl0963.35158MR1784963
  27. [27] P. Lin, C. Liu and H. Zhang, An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J. Comput. Phys.227 (2007) 1411–1427. Zbl1133.65077MR2442400
  28. [28] C. Liu and N.J. Walkington, Approximation of liquid crystal flows. SIAM J. Numer. Anal.37 (2000) 725–741. Zbl1040.76036MR1740379
  29. [29] C. Liu and N.J. Walkington, Mixed Methods for the Approximation of Liquid Crystal Flows. ESAIM: M2AN 36 (2002) 205–222. Zbl1032.76035MR1906815
  30. [30] G. Mingione, Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math.51 (2006) 355–426. Zbl1164.49324MR2291779
  31. [31] C.W. Oseen, The theory of liquid crystals. Trans. Faraday Soc.29 (1933) 883–889. Zbl0008.04203
  32. [32] I.W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals: a Mathematical Introduction. Taylor & Francis Inc., New York (2004). 
  33. [33] E.G. Virga, Variational theories for liquid crystals, Appl. Math. Math. Comput. 8. Chapman & Hall, London (1994). Zbl0814.49002MR1369095
  34. [34] N.J. Walkington, Compactness properties of the DG and CG time stepping schemes for parabolic equations. SIAM J. Numer. Anal.47 (2010) 4680–4710. Zbl1252.65169MR2595054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.