Displaying similar documents to “Mixed precision GMRES-based iterative refinement with recycling”

ℓ¹-Spreading models in subspaces of mixed Tsirelson spaces

Denny H. Leung, Wee-Kee Tang (2006)

Studia Mathematica

Similarity:

We investigate the existence of higher order ℓ¹-spreading models in subspaces of mixed Tsirelson spaces. For instance, we show that the following conditions are equivalent for the mixed Tsirelson space X = T [ ( θ , ) n = 1 ] : (1) Every block subspace of X contains an ¹ - ω -spreading model, (2) The Bourgain ℓ¹-index I b ( Y ) = I ( Y ) > ω ω for any block subspace Y of X, (3) l i m l i m s u p θ m + n / θ > 0 and every block subspace Y of X contains a block sequence equivalent to a subsequence of the unit vector basis of X. Moreover, if one (and hence all) of these...

The diagonal mapping in mixed norm spaces

Guangbin Ren, Jihuai Shi (2004)

Studia Mathematica

Similarity:

For any holomorphic function F in the unit polydisc Uⁿ of ℂⁿ, we consider its restriction to the diagonal, i.e., the function in the unit disc U of ℂ defined by F(z) = F(z,...,z), and prove that the diagonal mapping maps the mixed norm space H p , q , α ( U ) of the polydisc onto the mixed norm space H p , q , | α | + ( p / q + 1 ) ( n - 1 ) ( U ) of the unit disc for any 0 < p < ∞ and 0 < q ≤ ∞.

Function spaces with dominating mixed smoothness

Jan Vybiral

Similarity:

We study several techniques which are well known in the case of Besov and Triebel-Lizorkin spaces and extend them to spaces with dominating mixed smoothness. We use the ideas of Triebel to prove three important decomposition theorems. We deal with so-called atomic, subatomic and wavelet decompositions. All these theorems have much in common. Roughly speaking, they say that a function f belongs to some function space (say S p , q r ̅ A ) if, and only if, it can be decomposed as f ( x ) = ν m λ ν m a ν m ( x ) , convergence in S’, with...

Variations of mixed Hodge structure attached to the deformation theory of a complex variation of Hodge structures

Philippe Eyssidieux, Carlos Simpson (2011)

Journal of the European Mathematical Society

Similarity:

Let X be a compact Kähler manifold, x X be a base point and ρ : π 1 ( X , x ) G L N ( C ) be the monodromy representation of a 𝒞 -VHS. Building on Goldman–Millson’s classical work, we construct a mixed Hodge structure on the complete local ring of the representation variety at ρ and a variation of mixed Hodge structures whose monodromy is the universal deformation of ρ .

Minimality properties of Tsirelson type spaces

Denka Kutzarova, Denny H. Leung, Antonis Manoussakis, Wee-Kee Tang (2008)

Studia Mathematica

Similarity:

We study minimality properties of partly modified mixed Tsirelson spaces. A Banach space with a normalized basis ( e k ) is said to be subsequentially minimal if for every normalized block basis ( x k ) of ( e k ) , there is a further block basis ( y k ) of ( x k ) such that ( y k ) is equivalent to a subsequence of ( e k ) . Sufficient conditions are given for a partly modified mixed Tsirelson space to be subsequentially minimal, and connections with Bourgain’s ℓ¹-index are established. It is also shown that a large class of...

On the oscillation of forced second order mixed-nonlinear elliptic equations

Zhiting Xu (2010)

Annales Polonici Mathematici

Similarity:

Oscillation theorems are established for forced second order mixed-nonlinear elliptic differential equations ⎧ d i v ( A ( x ) | | y | | p - 1 y ) + b ( x ) , | | y | | p - 1 y + C ( x , y ) = e ( x ) , ⎨ ⎩ C ( x , y ) = c ( x ) | y | p - 1 y + i = 1 m c i ( x ) | y | p i - 1 y under quite general conditions. These results are extensions of the recent results of Sun and Wong, [J. Math. Anal. Appl. 334 (2007)] and Zheng, Wang and Han [Appl. Math. Lett. 22 (2009)] for forced second order ordinary differential equations with mixed nonlinearities, and include some known oscillation results in the literature

Further new generalized topologies via mixed constructions due to Császár

Erdal Ekici (2015)

Mathematica Bohemica

Similarity:

The theory of generalized topologies was introduced by Á. Császár (2002). In the literature, some authors have introduced and studied generalized topologies and some generalized topologies via generalized topological spaces due to Á. Császár. Also, the notions of mixed constructions based on two generalized topologies were introduced and investigated by Á. Császár (2009). The main aim of this paper is to introduce and study further new generalized topologies called μ 12 C via mixed constructions...

Noncharacteristic mixed problems for hyperbolic systems of the first order

Ewa Zadrzyńska

Similarity:

CONTENTS1. Introduction....................................................................................................................................................52. Notations and preliminaries .........................................................................................................................11 2.1. Function spaces and spaces of distributions............................................................................................11 2.2. Perturbations...

Distortion and spreading models in modified mixed Tsirelson spaces

S. A. Argyros, I. Deliyanni, A. Manoussakis (2003)

Studia Mathematica

Similarity:

The results of the first part concern the existence of higher order ℓ₁ spreading models in asymptotic ℓ₁ Banach spaces. We sketch the proof of the fact that the mixed Tsirelson space T[(ₙ,θₙ)ₙ], θ n + m θ θ and l i m n θ 1 / n = 1 , admits an ω spreading model in every block subspace. We also prove that if X is a Banach space with a basis, with the property that there exists a sequence (θₙ)ₙ ⊂ (0,1) with l i m n θ 1 / n = 1 , such that, for every n ∈ ℕ, | | k = 1 m x k | | θ k = 1 m | | x k | | for every ₙ-admissible block sequence ( x k ) k = 1 m of vectors in X, then there exists c...

A new optimized iterative method for solving M -matrix linear systems

Alireza Fakharzadeh Jahromi, Nafiseh Nasseri Shams (2022)

Applications of Mathematics

Similarity:

In this paper, we present a new iterative method for solving a linear system, whose coefficient matrix is an M -matrix. This method includes four parameters that are obtained by the accelerated overrelaxation (AOR) splitting and using the Taylor approximation. First, under some standard assumptions, we establish the convergence properties of the new method. Then, by minimizing the Frobenius norm of the iteration matrix, we find the optimal parameters. Meanwhile, numerical results on test...

L p - and S p , q r B -discrepancy of (order 2) digital nets

Lev Markhasin (2015)

Acta Arithmetica

Similarity:

Dick proved that all dyadic order 2 digital nets satisfy optimal upper bounds on the L p -discrepancy. We prove this for arbitrary prime base b with an alternative technique using Haar bases. Furthermore, we prove that all digital nets satisfy optimal upper bounds on the discrepancy function in Besov spaces with dominating mixed smoothness for a certain parameter range, and enlarge that range for order 2 digital nets. The discrepancy function in Triebel-Lizorkin and Sobolev spaces with...