Displaying similar documents to “Upper and lower convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under large initial perturbation”

The mathematical theory of low Mach number flows

Steven Schochet (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The mathematical theory of the passage from compressible to incompressible fluid flow is reviewed.

Spatial decay estimates for the Forchheimer fluid equations in a semi-infinite cylinder

Xuejiao Chen, Yuanfei Li (2023)

Applications of Mathematics

Similarity:

The spatial behavior of solutions is studied in the model of Forchheimer equations. Using the energy estimate method and the differential inequality technology, exponential decay bounds for solutions are derived. To make the decay bounds explicit, we obtain the upper bound for the total energy. We also extend the study of spatial behavior of Forchheimer porous material in a saturated porous medium.

The mortar finite element method for Bingham fluids

Patrick Hild (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This paper deals with the flow problem of a viscous plastic fluid in a cylindrical pipe. In order to approximate this problem governed by a variational inequality, we apply the nonconforming mortar finite element method. By using appropriate techniques, we are able to prove the convergence of the method and to obtain the same convergence rate as in the conforming case.

1D dynamics of a second-grade viscous fluid in a constricted tube

Fernando Carapau, Adélia Sequeira (2008)

Banach Center Publications

Similarity:

Using a one-dimensional hierarchical model based on the Cosserat theory approach to fluid dynamics we can reduce the full 3D system of equations for the axisymmetric unsteady motion of a non-Newtonian incompressible second-grade viscous fluid to a system of equations depending on time and on a single spatial variable. From this new system we obtain the steady relationship between average pressure gradient and volume flow rate over a finite section of a straight constricted tube, and...

Two-Layer Flow with One Viscous Layer in Inclined Channels

O. K. Matar, G. M. Sisoev, C. J. Lawrence (2008)

Mathematical Modelling of Natural Phenomena

Similarity:

We study pressure-driven, two-layer flow in inclined channels with high density and viscosity contrasts. We use a combination of asymptotic reduction, boundary-layer theory and the Karman-Polhausen approximation to derive evolution equations that describe the interfacial dynamics. Two distinguished limits are considered: where the viscosity ratio is small with density ratios of order unity, and where both density and viscosity ratios are small. The evolution equations account for the...