Modelling of the automatic depth control electrohydraulic system using RBF neural network and genetic algorithm.
Zong-Yi, Xing, Yong, Qin, Xue-Miao, Pang, Li-Min, Jia, Yuan, Zhang (2010)
Mathematical Problems in Engineering
Similarity:
Zong-Yi, Xing, Yong, Qin, Xue-Miao, Pang, Li-Min, Jia, Yuan, Zhang (2010)
Mathematical Problems in Engineering
Similarity:
Günaydın, Kemal, Günaydın, Ayten (2008)
Mathematical Problems in Engineering
Similarity:
Sen, Tarun K., Ghandforoush, Parviz, Stivason, Charles T. (2004)
Journal of Applied Mathematics and Decision Sciences
Similarity:
D. Zhang, Q. Jiang, X. Li (2005)
Mathware and Soft Computing
Similarity:
This paper describes a heuristic forecasting model based on neural networks for stock decision-making. Some heuristic strategies are presented for enhancing the learning capability of neural networks and obtaining better trading performance. The China Shanghai Composite Index is used as case study. The forecasting model can forecast the buying and selling signs according to the result of neural network prediction. Results are compared with a benchmark buy-and-hold strategy. The forecasting...
Piotr Szymczyk, Sylwia Tomecka-Suchoń, Magdalena Szymczyk (2015)
International Journal of Applied Mathematics and Computer Science
Similarity:
In this article a new neural network based method for automatic classification of ground penetrating radar (GPR) traces is proposed. The presented approach is based on a new representation of GPR signals by polynomials approximation. The coefficients of the polynomial (the feature vector) are neural network inputs for automatic classification of a special kind of geologic structure-a sinkhole. The analysis and results show that the classifier can effectively distinguish sinkholes from...
Maciej Huk (2012)
International Journal of Applied Mathematics and Computer Science
Similarity:
In this paper the Sigma-if artificial neural network model is considered, which is a generalization of an MLP network with sigmoidal neurons. It was found to be a potentially universal tool for automatic creation of distributed classification and selective attention systems. To overcome the high nonlinearity of the aggregation function of Sigma-if neurons, the training process of the Sigma-if network combines an error backpropagation algorithm with the self-consistency paradigm widely...
Romas Baronas, Feliksas Ivanauskas, Romualdas Maslovskis, Marijus Radavičius, Pranas Vaitkus (2007)
Kybernetika
Similarity:
This paper presents a semi-global mathematical model for an analysis of a signal of amperometric biosensors. Artificial neural networks were applied to an analysis of the biosensor response to multi-component mixtures. A large amount of the learning and test data was synthesized using computer simulation of the biosensor response. The biosensor signal was analyzed with respect to the concentration of each component of the mixture. The paradigm of locally weighted linear regression was...
Margaris, Athanasios, Kotsialos, Efthymios, Styliadis, Athansios, Roumeliotis, Manos (2004)
Acta Universitatis Apulensis. Mathematics - Informatics
Similarity:
Salam A. Najim, Zakaria A. M. Al-Omari, Samir M. Said (2008)
Computer Science and Information Systems
Similarity:
Izabela Rojek (2010)
Control and Cybernetics
Similarity: