Locally weighted neural networks for an analysis of the biosensor response
Romas Baronas; Feliksas Ivanauskas; Romualdas Maslovskis; Marijus Radavičius; Pranas Vaitkus
Kybernetika (2007)
- Volume: 43, Issue: 1, page 21-30
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBaronas, Romas, et al. "Locally weighted neural networks for an analysis of the biosensor response." Kybernetika 43.1 (2007): 21-30. <http://eudml.org/doc/33837>.
@article{Baronas2007,
abstract = {This paper presents a semi-global mathematical model for an analysis of a signal of amperometric biosensors. Artificial neural networks were applied to an analysis of the biosensor response to multi-component mixtures. A large amount of the learning and test data was synthesized using computer simulation of the biosensor response. The biosensor signal was analyzed with respect to the concentration of each component of the mixture. The paradigm of locally weighted linear regression was used for retraining the neural networks. The application of locally weighted regression significantly improved the quality of the prediction of the concentrations.},
author = {Baronas, Romas, Ivanauskas, Feliksas, Maslovskis, Romualdas, Radavičius, Marijus, Vaitkus, Pranas},
journal = {Kybernetika},
keywords = {locally weighted regression; artificial neural network; modelling; biosensor; locally weighted regression; artificial neural network; physico-chemical change of biological sensing elements},
language = {eng},
number = {1},
pages = {21-30},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Locally weighted neural networks for an analysis of the biosensor response},
url = {http://eudml.org/doc/33837},
volume = {43},
year = {2007},
}
TY - JOUR
AU - Baronas, Romas
AU - Ivanauskas, Feliksas
AU - Maslovskis, Romualdas
AU - Radavičius, Marijus
AU - Vaitkus, Pranas
TI - Locally weighted neural networks for an analysis of the biosensor response
JO - Kybernetika
PY - 2007
PB - Institute of Information Theory and Automation AS CR
VL - 43
IS - 1
SP - 21
EP - 30
AB - This paper presents a semi-global mathematical model for an analysis of a signal of amperometric biosensors. Artificial neural networks were applied to an analysis of the biosensor response to multi-component mixtures. A large amount of the learning and test data was synthesized using computer simulation of the biosensor response. The biosensor signal was analyzed with respect to the concentration of each component of the mixture. The paradigm of locally weighted linear regression was used for retraining the neural networks. The application of locally weighted regression significantly improved the quality of the prediction of the concentrations.
LA - eng
KW - locally weighted regression; artificial neural network; modelling; biosensor; locally weighted regression; artificial neural network; physico-chemical change of biological sensing elements
UR - http://eudml.org/doc/33837
ER -
References
top- Artursson T., Eklöv T., Lundström I., Mårtensson P., Sjöström, M., Holmberg M., 10.1002/1099-128X(200009/12)14:5/6<711::AID-CEM607>3.0.CO;2-4, J. Chemometrics 14 (2000), 711–723 DOI10.1002/1099-128X(200009/12)14:5/6<711::AID-CEM607>3.0.CO;2-4
- Atkeson C. G., Moore A. W., Schaal S., 10.1023/A:1006559212014, Artificial Intelligence Rev. 11 (1997), 11–73 (1997) DOI10.1023/A:1006559212014
- Baronas R., Christensen J., Ivanauskas, F., Kulys J., Computer simulation of amperometric biosensor response to mixtures of compounds, Nonlinear Anal. Model. Control 7 (2002), 3–14 Zbl1062.93500
- Baronas R., Ivanauskas, F., Kulys J., 10.3390/s30700248, Sensors 3 (2003), 248–262 DOI10.3390/s30700248
- Baronas R., Ivanauskas F., Maslovskis, R., Vaitkus P., 10.1023/B:JOMC.0000044225.76158.8e, J. Math. Chem. 36 (2004), 281–297 Zbl1053.92024MR2105018DOI10.1023/B:JOMC.0000044225.76158.8e
- Chan L. W., Szeto C. C., Training recurrent network with block-diagonal approximated Levenberg–Marquardt algorithm, In: Proc. IEEE Internat. Joint Conference on Neural Networks, IJCNN ’99, pp. 1521–1526, 1999
- Devroye L., Gyorfi, L., Lugosi G., A Probabilistic Theory of Pattern Recognition, Springer–Verlag, New York 1996 MR1383093
- Haykin S., Neural Networks: A Comprehensive Foundation, Second edition. Prentice Hall, New York 1999 Zbl0934.68076
- INTELLISENS, Intelligent Signal Processing of Biosensor Arrays Using Pattern Recognition for Characterisation of Wastewater: Aiming Towards Alarm Systems, EC RTD project. 2000 – 2003
- Malkavaara P., Alén, R., Kolehmainen E., 10.1021/ci990444i, J. Chem. Inf. Comput. Sci. 40 (2000), 438–441 DOI10.1021/ci990444i
- Martens H., Næs T., Multivariate Calibration, Wiley, Chichester 1989 Zbl0732.62109MR1029523
- Moore A. W., Schneider J. G., Deng K., Efficient Locally Weighted Polynomial Regression Predictions, In: Proc. Fourteenth International Conference on Machine Learning, pp. 236–244, 1997
- Nakamoto T., Hiramatsu H., 10.1016/S0925-4005(02)00130-2, Sens. Actuators B 85 (2002), 98–105 DOI10.1016/S0925-4005(02)00130-2
- Patterson D., Artificial Neural Networks, Theory and Applications, Prentice Hall, Upper Saddle River 1996 Zbl0839.68079
- Rao C. R., Linear Statistical Inference and its Application, Wiley, New York 1973 MR0346957
- Rogers K. R., 10.1016/0956-5663(95)96929-S, Biosens. Biolectron. 10 (1995), 533–541 (1995) DOI10.1016/0956-5663(95)96929-S
- Ruppert D., Wand M. P., 10.1214/aos/1176325632, Ann. Statist. 22 (1994), 1346–1370 (1994) Zbl0821.62020MR1311979DOI10.1214/aos/1176325632
- Ruzicka J., Hansen E. H., Flow Injection Analysis, Wiley, New York 1988
- Samarskii A. A., The Theory of Difference Schemes, Marcel Dekker, New York – Basel 2001 Zbl0971.65076MR1818323
- Schaal S., Atkeson C. G., Assessing the quality of learned local models, In: Advances in Neural Information Processing Systems 6 (J, Cowan, G. Tesauro, J. Alspector, eds.), Morgan Kaufmann 1994, pp. 160–167 (1994)
- Schaal S., Atkeson C. G., 10.1162/089976698300016963, Neural Comput. 10 (1998), 2047–2084 (1998) DOI10.1162/089976698300016963
- Scheller F., Schubert F., Biosensors, Vol, 7. Elsevier, Amsterdam 1992
- Schulmeister T., Mathematical modelling of the dynamics of amperometric enzyme electrodes, Selective Electrode Rev. 12 (1990), 260–303 (1990)
- Turner A. P. F., Karube, I., Wilson G. S., Biosensors: Fundamentals and Applications, Oxford University Press, Oxford 1987
- Wang Z., Isaksson, T., Kowalski B. R., 10.1021/ac00074a012, Anal. Chem. 66 (1994), 249–260 (1994) DOI10.1021/ac00074a012
- Wollenberger U., Lisdat, F., Scheller F. W., Frontiers in Biosensorics 2: Practical Applications, Birkhauser Verlag, Basel 1997
- Ziegler C., Göpel W., Hämmerle H., Hatt H., Jung G., Laxhuber L., Schmidt H.-L., Schütz S., Vögtle, F., Zell A., Bioelectronic noses: A status report, Part II. Biosens. Bioelectron. 13 (1998), 539–571 (1998)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.