Locally weighted neural networks for an analysis of the biosensor response

Romas Baronas; Feliksas Ivanauskas; Romualdas Maslovskis; Marijus Radavičius; Pranas Vaitkus

Kybernetika (2007)

  • Volume: 43, Issue: 1, page 21-30
  • ISSN: 0023-5954

Abstract

top
This paper presents a semi-global mathematical model for an analysis of a signal of amperometric biosensors. Artificial neural networks were applied to an analysis of the biosensor response to multi-component mixtures. A large amount of the learning and test data was synthesized using computer simulation of the biosensor response. The biosensor signal was analyzed with respect to the concentration of each component of the mixture. The paradigm of locally weighted linear regression was used for retraining the neural networks. The application of locally weighted regression significantly improved the quality of the prediction of the concentrations.

How to cite

top

Baronas, Romas, et al. "Locally weighted neural networks for an analysis of the biosensor response." Kybernetika 43.1 (2007): 21-30. <http://eudml.org/doc/33837>.

@article{Baronas2007,
abstract = {This paper presents a semi-global mathematical model for an analysis of a signal of amperometric biosensors. Artificial neural networks were applied to an analysis of the biosensor response to multi-component mixtures. A large amount of the learning and test data was synthesized using computer simulation of the biosensor response. The biosensor signal was analyzed with respect to the concentration of each component of the mixture. The paradigm of locally weighted linear regression was used for retraining the neural networks. The application of locally weighted regression significantly improved the quality of the prediction of the concentrations.},
author = {Baronas, Romas, Ivanauskas, Feliksas, Maslovskis, Romualdas, Radavičius, Marijus, Vaitkus, Pranas},
journal = {Kybernetika},
keywords = {locally weighted regression; artificial neural network; modelling; biosensor; locally weighted regression; artificial neural network; physico-chemical change of biological sensing elements},
language = {eng},
number = {1},
pages = {21-30},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Locally weighted neural networks for an analysis of the biosensor response},
url = {http://eudml.org/doc/33837},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Baronas, Romas
AU - Ivanauskas, Feliksas
AU - Maslovskis, Romualdas
AU - Radavičius, Marijus
AU - Vaitkus, Pranas
TI - Locally weighted neural networks for an analysis of the biosensor response
JO - Kybernetika
PY - 2007
PB - Institute of Information Theory and Automation AS CR
VL - 43
IS - 1
SP - 21
EP - 30
AB - This paper presents a semi-global mathematical model for an analysis of a signal of amperometric biosensors. Artificial neural networks were applied to an analysis of the biosensor response to multi-component mixtures. A large amount of the learning and test data was synthesized using computer simulation of the biosensor response. The biosensor signal was analyzed with respect to the concentration of each component of the mixture. The paradigm of locally weighted linear regression was used for retraining the neural networks. The application of locally weighted regression significantly improved the quality of the prediction of the concentrations.
LA - eng
KW - locally weighted regression; artificial neural network; modelling; biosensor; locally weighted regression; artificial neural network; physico-chemical change of biological sensing elements
UR - http://eudml.org/doc/33837
ER -

References

top
  1. Artursson T., Eklöv T., Lundström I., Mårtensson P., Sjöström, M., Holmberg M., 10.1002/1099-128X(200009/12)14:5/6<711::AID-CEM607>3.0.CO;2-4, J. Chemometrics 14 (2000), 711–723 DOI10.1002/1099-128X(200009/12)14:5/6<711::AID-CEM607>3.0.CO;2-4
  2. Atkeson C. G., Moore A. W., Schaal S., 10.1023/A:1006559212014, Artificial Intelligence Rev. 11 (1997), 11–73 (1997) DOI10.1023/A:1006559212014
  3. Baronas R., Christensen J., Ivanauskas, F., Kulys J., Computer simulation of amperometric biosensor response to mixtures of compounds, Nonlinear Anal. Model. Control 7 (2002), 3–14 Zbl1062.93500
  4. Baronas R., Ivanauskas, F., Kulys J., 10.3390/s30700248, Sensors 3 (2003), 248–262 DOI10.3390/s30700248
  5. Baronas R., Ivanauskas F., Maslovskis, R., Vaitkus P., 10.1023/B:JOMC.0000044225.76158.8e, J. Math. Chem. 36 (2004), 281–297 Zbl1053.92024MR2105018DOI10.1023/B:JOMC.0000044225.76158.8e
  6. Chan L. W., Szeto C. C., Training recurrent network with block-diagonal approximated Levenberg–Marquardt algorithm, In: Proc. IEEE Internat. Joint Conference on Neural Networks, IJCNN ’99, pp. 1521–1526, 1999 
  7. Devroye L., Gyorfi, L., Lugosi G., A Probabilistic Theory of Pattern Recognition, Springer–Verlag, New York 1996 MR1383093
  8. Haykin S., Neural Networks: A Comprehensive Foundation, Second edition. Prentice Hall, New York 1999 Zbl0934.68076
  9. INTELLISENS, Intelligent Signal Processing of Biosensor Arrays Using Pattern Recognition for Characterisation of Wastewater: Aiming Towards Alarm Systems, EC RTD project. 2000 – 2003 
  10. Malkavaara P., Alén, R., Kolehmainen E., 10.1021/ci990444i, J. Chem. Inf. Comput. Sci. 40 (2000), 438–441 DOI10.1021/ci990444i
  11. Martens H., Næs T., Multivariate Calibration, Wiley, Chichester 1989 Zbl0732.62109MR1029523
  12. Moore A. W., Schneider J. G., Deng K., Efficient Locally Weighted Polynomial Regression Predictions, In: Proc. Fourteenth International Conference on Machine Learning, pp. 236–244, 1997 
  13. Nakamoto T., Hiramatsu H., 10.1016/S0925-4005(02)00130-2, Sens. Actuators B 85 (2002), 98–105 DOI10.1016/S0925-4005(02)00130-2
  14. Patterson D., Artificial Neural Networks, Theory and Applications, Prentice Hall, Upper Saddle River 1996 Zbl0839.68079
  15. Rao C. R., Linear Statistical Inference and its Application, Wiley, New York 1973 MR0346957
  16. Rogers K. R., 10.1016/0956-5663(95)96929-S, Biosens. Biolectron. 10 (1995), 533–541 (1995) DOI10.1016/0956-5663(95)96929-S
  17. Ruppert D., Wand M. P., 10.1214/aos/1176325632, Ann. Statist. 22 (1994), 1346–1370 (1994) Zbl0821.62020MR1311979DOI10.1214/aos/1176325632
  18. Ruzicka J., Hansen E. H., Flow Injection Analysis, Wiley, New York 1988 
  19. Samarskii A. A., The Theory of Difference Schemes, Marcel Dekker, New York – Basel 2001 Zbl0971.65076MR1818323
  20. Schaal S., Atkeson C. G., Assessing the quality of learned local models, In: Advances in Neural Information Processing Systems 6 (J, Cowan, G. Tesauro, J. Alspector, eds.), Morgan Kaufmann 1994, pp. 160–167 (1994) 
  21. Schaal S., Atkeson C. G., 10.1162/089976698300016963, Neural Comput. 10 (1998), 2047–2084 (1998) DOI10.1162/089976698300016963
  22. Scheller F., Schubert F., Biosensors, Vol, 7. Elsevier, Amsterdam 1992 
  23. Schulmeister T., Mathematical modelling of the dynamics of amperometric enzyme electrodes, Selective Electrode Rev. 12 (1990), 260–303 (1990) 
  24. Turner A. P. F., Karube, I., Wilson G. S., Biosensors: Fundamentals and Applications, Oxford University Press, Oxford 1987 
  25. Wang Z., Isaksson, T., Kowalski B. R., 10.1021/ac00074a012, Anal. Chem. 66 (1994), 249–260 (1994) DOI10.1021/ac00074a012
  26. Wollenberger U., Lisdat, F., Scheller F. W., Frontiers in Biosensorics 2: Practical Applications, Birkhauser Verlag, Basel 1997 
  27. Ziegler C., Göpel W., Hämmerle H., Hatt H., Jung G., Laxhuber L., Schmidt H.-L., Schütz S., Vögtle, F., Zell A., Bioelectronic noses: A status report, Part II. Biosens. Bioelectron. 13 (1998), 539–571 (1998) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.