Displaying similar documents to “Almost complete convergence of a recursive kernel estimator of the density with complete and censored independent data”

Large and Moderate Deviations Principles for Recursive Kernel Estimator of a Multivariate Density and its Partial Derivatives

Mokkadem, Abdelkader, Mariane, Pelletier, Baba, Thiam (2006)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 62G07, 60F10. In this paper we prove large and moderate deviations principles for the recursive kernel estimator of a probability density function and its partial derivatives. Unlike the density estimator, the derivatives estimators exhibit a quadratic behaviour not only for the moderate deviations scale but also for the large deviations one. We provide results both for the pointwise and the uniform deviations.

Strong uniform consistency rates of some characteristics of the conditional distribution estimator in the functional single-index model

Amina Angelika Bouchentouf, Tayeb Djebbouri, Abbes Rabhi, Khadidja Sabri (2014)

Applicationes Mathematicae

Similarity:

The aim of this paper is to establish a nonparametric estimate of some characteristics of the conditional distribution. Kernel type estimators for the conditional cumulative distribution function and for the successive derivatives of the conditional density of a scalar response variable Y given a Hilbertian random variable X are introduced when the observations are linked with a single-index structure. We establish the pointwise almost complete convergence and the uniform almost complete...

Local linear estimation of the conditional mode under left truncation for functional regressors

Halima Boudada, Sarra Leulmi (2023)

Kybernetika

Similarity:

In this work, we introduce a local linear estimator of the conditional mode for a random real response variable which is subject to left-truncation by another random variable where the covariate takes values in an infinite dimensional space. We first establish both of pointwise and uniform almost sure convergences, with rates, of the conditional density estimator. Then, we deduce the strong consistency of the obtained conditional mode estimator. We finally illustrate the outperformance...

Using auxiliary information in statistical function estimation

Sergey Tarima, Dmitri Pavlov (2006)

ESAIM: Probability and Statistics

Similarity:

In many practical situations sample sizes are not sufficiently large and estimators based on such samples may not be satisfactory in terms of their variances. At the same time it is not unusual that some auxiliary information about the parameters of interest is available. This paper considers a method of using auxiliary information for improving properties of the estimators based on a current sample only. In particular, it is assumed that the information is available as a number of estimates...

Asymptotic unbiased density estimators

Nicolas W. Hengartner, Éric Matzner-Løber (2009)

ESAIM: Probability and Statistics

Similarity:

This paper introduces a computationally tractable density estimator that has the same asymptotic variance as the classical Nadaraya-Watson density estimator but whose asymptotic bias is zero. We achieve this result using a two stage estimator that applies a multiplicative bias correction to an oversmooth pilot estimator. Simulations show that our asymptotic results are available for samples as low as , where we see an improvement of as much as 20% over the traditionnal estimator. ...

Empirical comparison between the Nelson-Aalen Estimator and the Naive Local Constant Estimator.

Ana María Pérez-Marín (2008)

SORT

Similarity:

The Nelson-Aalen estimator is widely used in biostatistics as a non-parametric estimator of the cumulative hazard function based on a right censored sample. A number of alternative estimators can be mentioned, namely, the naive local constant estimator (Guillén, Nielsen and Pérez-Marín, 2007) which provides improved bias versus variance properties compared to the traditional Nelson-Aalen estimator. Nevertheless, an empirical comparison of these two estimators has never been carried out....

Using auxiliary information in statistical function estimation

Sergey Tarima, Dmitri Pavlov (2005)

ESAIM: Probability and Statistics

Similarity:

In many practical situations sample sizes are not sufficiently large and estimators based on such samples may not be satisfactory in terms of their variances. At the same time it is not unusual that some auxiliary information about the parameters of interest is available. This paper considers a method of using auxiliary information for improving properties of the estimators based on a current sample only. In particular, it is assumed that the information is available as a number of...

Improving small area estimation by combining surveys: new perspectives in regional statistics.

Alex Costa, Albert Satorra, Eva Ventura (2006)

SORT

Similarity:

A national survey designed for estimating a specific population quantity is sometimes used for estimation of this quantity also for a small area, such as a province. Budget constraints do not allow a greater sample size for the small area, and so other means of improving estimation have to be devised. We investigate such methods and assess them by a Monte Carlo study. We explore how a complementary survey can be exploited in small area estimation. We use the context of the Spanish Labour...

Smoothing and preservation of irregularities using local linear fitting

Irène Gijbels (2008)

Applications of Mathematics

Similarity:

For nonparametric estimation of a smooth regression function, local linear fitting is a widely-used method. The goal of this paper is to briefly review how to use this method when the unknown curve possibly has some irregularities, such as jumps or peaks, at unknown locations. It is then explained how the same basic method can be used when estimating unsmooth probability densities and conditional variance functions.