Local linear estimation of the conditional mode under left truncation for functional regressors

Halima Boudada; Sarra Leulmi

Kybernetika (2023)

  • Volume: 59, Issue: 4, page 548-574
  • ISSN: 0023-5954

Abstract

top
In this work, we introduce a local linear estimator of the conditional mode for a random real response variable which is subject to left-truncation by another random variable where the covariate takes values in an infinite dimensional space. We first establish both of pointwise and uniform almost sure convergences, with rates, of the conditional density estimator. Then, we deduce the strong consistency of the obtained conditional mode estimator. We finally illustrate the outperformance of our method with respect to the kernel one through a simulation study for a finite sample with different rates of truncation and sizes.

How to cite

top

Boudada, Halima, and Leulmi, Sarra. "Local linear estimation of the conditional mode under left truncation for functional regressors." Kybernetika 59.4 (2023): 548-574. <http://eudml.org/doc/299407>.

@article{Boudada2023,
abstract = {In this work, we introduce a local linear estimator of the conditional mode for a random real response variable which is subject to left-truncation by another random variable where the covariate takes values in an infinite dimensional space. We first establish both of pointwise and uniform almost sure convergences, with rates, of the conditional density estimator. Then, we deduce the strong consistency of the obtained conditional mode estimator. We finally illustrate the outperformance of our method with respect to the kernel one through a simulation study for a finite sample with different rates of truncation and sizes.},
author = {Boudada, Halima, Leulmi, Sarra},
journal = {Kybernetika},
keywords = {functional regressors; left truncation model; conditional mode; almost sure convergence; local linear estimator},
language = {eng},
number = {4},
pages = {548-574},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Local linear estimation of the conditional mode under left truncation for functional regressors},
url = {http://eudml.org/doc/299407},
volume = {59},
year = {2023},
}

TY - JOUR
AU - Boudada, Halima
AU - Leulmi, Sarra
TI - Local linear estimation of the conditional mode under left truncation for functional regressors
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 4
SP - 548
EP - 574
AB - In this work, we introduce a local linear estimator of the conditional mode for a random real response variable which is subject to left-truncation by another random variable where the covariate takes values in an infinite dimensional space. We first establish both of pointwise and uniform almost sure convergences, with rates, of the conditional density estimator. Then, we deduce the strong consistency of the obtained conditional mode estimator. We finally illustrate the outperformance of our method with respect to the kernel one through a simulation study for a finite sample with different rates of truncation and sizes.
LA - eng
KW - functional regressors; left truncation model; conditional mode; almost sure convergence; local linear estimator
UR - http://eudml.org/doc/299407
ER -

References

top
  1. Hennania, L. Ait, Lemdania, M., Said, E. Ould, , J. Nonparametr. Statist. 31 (2019), 221-2430. MR3902150DOI
  2. Barrientos-Marin, J., Ferraty, F., Vieu, P., , J.Nonparametr. Statist. 22 (2010), 617-632. MR2682211DOI
  3. Benkhaled, A., Madani, F., Khardani, S., , Arab. J. Math. 9 (2020), 513-529. MR4159735DOI
  4. Boudada, H., , Int. J. Math. Oper. Res. 21 (2022), 127-140. MR4422724DOI
  5. Boudada, H., Leulmi, S., Kharfouch, S., , J. Sib. Fed. Univ. - Math. Phys. 13 (2020), 480-491. MR4155489DOI
  6. Demongeot, J., Laksaci, A., Madani, F., Rachdi, M., , Statist. 47 (2013), 26-44. MR3023013DOI
  7. Derrar, S., Laksaci, A., Saïd, E. Ould, , J. Stat. Theory Pract. 9 (2015), 823-849. MR3378117DOI
  8. Derrar, S., Laksaci, A., Saïd, E. Ould, , Statist. Papers 61 (2018), 1181-1202. MR4096407DOI
  9. Fan, J., , J. Amer. Statist. Assoc. 87 (1992), 998-1004. MR1209561DOI
  10. Ferraty, F., Laksaci, A., Tadj, A., Vieu, P., , J. Statist. Plan, Inference 140 (2010), 335-352. MR2558367DOI
  11. Ferraty, F., Vieu, P., Nonparametric Functional Data Analysis. Theory and Practice., Springer Ser. Statist. New York 2006. MR2229687
  12. He, S., Yang, G. L., , Ann. Statist. 26 (1998), 1011-1027. MR1635434DOI
  13. Helal, N., Ould-Saïd, E., , Opuscula Math. 36 (2016), 25-48. MR3405828DOI
  14. Horrigue, W., Saïd, E. Ould, , Random Oper.Stoch. Equat. 19 (2011), 131-156. MR2805882DOI
  15. Lemdani, M., Ould-Saïd, E., , Comm. Statist. Theory Methods. 36 (2007), 155-173. MR2391868DOI
  16. Leulmi, S., , Comm. Statist. Theory Methods 50 (2019), 3286-3300. MR4279975DOI
  17. Leulmi, S., , J. Korean Statist. Soc. (2020), 25-46. MR4392464DOI
  18. Leulmi, S., Messaci, F., , Comm. Statist. Theory Methods 47 (2018), 5795-5811. MR3851988DOI
  19. Leulmi, S., Messaci, F., , J. Sib. Fed. Univ. - Math. Phys. 12 (2019), 379-391. MR3973719DOI
  20. Mechab, B., Hamidi, N., Benaissa, S., Nonparametric estimation of the relative error in functional regression and censored data., Chil. J. Statist. 10 (2019), 177-195. MR4054413
  21. Messaci, F., Nemouchi, N., Ouassou, I., Rachdi, M., , Stat. Methods Appl. 24 (2015), 597-622. MR3421675DOI
  22. Stute, W., , Ann. Statist. 21 (1993), 146-156. MR1212170DOI
  23. Woodroofe, M., , Ann. Statist. 13 (1985), 163-177. MR0773160DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.