Displaying similar documents to “A Simple Proof of the Perfect Matching Theorem”

A note on pm-compact bipartite graphs

Jinfeng Liu, Xiumei Wang (2014)

Discussiones Mathematicae Graph Theory

Similarity:

A graph is called perfect matching compact (briefly, PM-compact), if its perfect matching graph is complete. Matching-covered PM-compact bipartite graphs have been characterized. In this paper, we show that any PM-compact bipartite graph G with δ (G) ≥ 2 has an ear decomposition such that each graph in the decomposition sequence is also PM-compact, which implies that G is matching-covered

Several results on chordal bipartite graphs

Mihály Bakonyi, Aaron Bono (1997)

Czechoslovak Mathematical Journal

Similarity:

The question of generalizing results involving chordal graphs to similar concepts for chordal bipartite graphs is addressed. First, it is found that the removal of a bisimplicial edge from a chordal bipartite graph produces a chordal bipartite graph. As consequence, occurance of arithmetic zeros will not terminate perfect Gaussian elimination on sparse matrices having associated a chordal bipartite graph. Next, a property concerning minimal edge separators is presented. Finally, it is...

The Existence Of P≥3-Factor Covered Graphs

Sizhong Zhou, Jiancheng Wu, Tao Zhang (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A spanning subgraph F of a graph G is called a P≥3-factor of G if every component of F is a path of order at least 3. A graph G is called a P≥3-factor covered graph if G has a P≥3-factor including e for any e ∈ E(G). In this paper, we obtain three sufficient conditions for graphs to be P≥3-factor covered graphs. Furthermore, it is shown that the results are sharp.

1-factors and characterization of reducible faces of plane elementary bipartite graphs

Andrej Taranenko, Aleksander Vesel (2012)

Discussiones Mathematicae Graph Theory

Similarity:

As a general case of molecular graphs of benzenoid hydrocarbons, we study plane bipartite graphs with Kekulé structures (1-factors). A bipartite graph G is called elementary if G is connected and every edge belongs to a 1-factor of G. Some properties of the minimal and the maximal 1-factor of a plane elementary graph are given. A peripheral face f of a plane elementary graph is reducible, if the removal of the internal vertices and edges of the path that is the intersection...

Forbidden Structures for Planar Perfect Consecutively Colourable Graphs

Marta Borowiecka-Olszewska, Ewa Drgas-Burchardt (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A consecutive colouring of a graph is a proper edge colouring with posi- tive integers in which the colours of edges incident with each vertex form an interval of integers. The idea of this colouring was introduced in 1987 by Asratian and Kamalian under the name of interval colouring. Sevast- janov showed that the corresponding decision problem is NP-complete even restricted to the class of bipartite graphs. We focus our attention on the class of consecutively colourable graphs whose...

Comparing imperfection ratio and imperfection index for graph classes

Arie M. C. A. Koster, Annegret K. Wagler (2008)

RAIRO - Operations Research - Recherche Opérationnelle

Similarity:

Perfect graphs constitute a well-studied graph class with a rich structure, reflected by many characterizations with respect to different concepts. Perfect graphs are, for instance, precisely those graphs G where the stable set polytope STAB ( G ) coincides with the fractional stable set polytope QSTAB ( G ) . For all imperfect graphs G it holds that STAB ( G ) QSTAB ( G ) . It is, therefore, natural to use the difference between the two polytopes in order to decide how far an imperfect graph is away from being perfect. We discuss...

Conditions for β-perfectness

Judith Keijsper, Meike Tewes (2002)

Discussiones Mathematicae Graph Theory

Similarity:

A β-perfect graph is a simple graph G such that χ(G') = β(G') for every induced subgraph G' of G, where χ(G') is the chromatic number of G', and β(G') is defined as the maximum over all induced subgraphs H of G' of the minimum vertex degree in H plus 1 (i.e., δ(H)+1). The vertices of a β-perfect graph G can be coloured with χ(G) colours in polynomial time (greedily). The main purpose of this paper is to give necessary and sufficient conditions, in terms of forbidden...