Displaying similar documents to “On the classification and toughness of generalized permutation star-graphs”

On the domination number of prisms of graphs

Alewyn P. Burger, Christina M. Mynhardt, William D. Weakley (2004)

Discussiones Mathematicae Graph Theory

Similarity:

For a permutation π of the vertex set of a graph G, the graph π G is obtained from two disjoint copies G₁ and G₂ of G by joining each v in G₁ to π(v) in G₂. Hence if π = 1, then πG = K₂×G, the prism of G. Clearly, γ(G) ≤ γ(πG) ≤ 2 γ(G). We study graphs for which γ(K₂×G) = 2γ(G), those for which γ(πG) = 2γ(G) for at least one permutation π of V(G) and those for which γ(πG) = 2γ(G) for each permutation π of V(G).

Planar Permutation Graphs

Gary Chartrand, Frank Harary (1967)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Domination in functigraphs

Linda Eroh, Ralucca Gera, Cong X. Kang, Craig E. Larson, Eunjeong Yi (2012)

Discussiones Mathematicae Graph Theory

Similarity:

Let G₁ and G₂ be disjoint copies of a graph G, and let f:V(G₁) → V(G₂) be a function. Then a functigraph C(G,f) = (V,E) has the vertex set V = V(G₁) ∪ V(G₂) and the edge set E = E(G₁) ∪ E(G₂) ∪ {uv | u ∈ V(G₁), v ∈ V(G₂),v = f(u)}. A functigraph is a generalization of a permutation graph (also known as a generalized prism) in the sense of Chartrand and Harary. In this paper, we study domination in functigraphs. Let γ(G) denote the domination number of G. It is readily seen that γ(G)...

Dynamic cage survey.

Exoo, Geoffrey, Jajcay, Robert (2008)

The Electronic Journal of Combinatorics [electronic only]

Similarity: