The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On L w 2 -quasi-derivatives for solutions of perturbed general quasi-differential equations”

On quadratically integrable solutions of the second order linear equation

T. Chantladze, Nodar Kandelaki, Alexander Lomtatidze (2001)

Archivum Mathematicum

Similarity:

Integral criteria are established for dim V i ( p ) = 0 and dim V i ( p ) = 1 , i { 0 , 1 } , where V i ( p ) is the space of solutions u of the equation u ' ' + p ( t ) u = 0 satisfying the condition + u 2 ( s ) s i d s < + .

Fine and quasi connectedness in nonlinear potential theory

David R. Adams, John L. Lewis (1985)

Annales de l'institut Fourier

Similarity:

If B α , p denotes the Bessel capacity of subsets of Euclidean n -space, α &gt; 0 , 1 &lt; p &lt; , naturally associated with the space of Bessel potentials of L p -functions, then our principal result is the estimate: for 1 &lt; α p n , there is a constant C = C ( α , p , n ) such that for any set E min { B α , p ( E Q ) , B α , p ( E c Q ) } C · B α , p ( Q f E ) for all open cubes Q in n -space. Here f E is the boundary of the E in the ( α , p ) -fine topology i.e. the smallest topology on c -space that makes the associated ( α , p ) -linear potentials continuous there. As a consequence,...

Quasi-constricted linear operators on Banach spaces

Eduard Yu. Emel&amp;#039;yanov, Manfred P. H. Wolff (2001)

Studia Mathematica

Similarity:

Let X be a Banach space over ℂ. The bounded linear operator T on X is called quasi-constricted if the subspace X : = x X : l i m n | | T x | | = 0 is closed and has finite codimension. We show that a power bounded linear operator T ∈ L(X) is quasi-constricted iff it has an attractor A with Hausdorff measure of noncompactness χ | | · | | ( A ) < 1 for some equivalent norm ||·||₁ on X. Moreover, we characterize the essential spectral radius of an arbitrary bounded operator T by quasi-constrictedness of scalar multiples of T. Finally, we prove...

On quasi-compactness of operator nets on Banach spaces

Eduard Yu. Emel&#039;yanov (2011)

Studia Mathematica

Similarity:

The paper introduces a notion of quasi-compact operator net on a Banach space. It is proved that quasi-compactness of a uniform Lotz-Räbiger net ( T λ ) λ is equivalent to quasi-compactness of some operator T λ . We prove that strong convergence of a quasi-compact uniform Lotz-Räbiger net implies uniform convergence to a finite-rank projection. Precompactness of operator nets is also investigated.

Representation and construction of homogeneous and quasi-homogeneous n -ary aggregation functions

Yong Su, Radko Mesiar (2021)

Kybernetika

Similarity:

Homogeneity, as one type of invariantness, means that an aggregation function is invariant with respect to multiplication by a constant, and quasi-homogeneity, as a relaxed version, reflects the original output as well as the constant. In this paper, we characterize all homogeneous/quasi-homogeneous n -ary aggregation functions and present several methods to generate new homogeneous/quasi-homogeneous n -ary aggregation functions by aggregation of given ones.

Some remarks on quasi-Cohen sets

Pascal Lefèvre, Daniel Li (2001)

Colloquium Mathematicae

Similarity:

We are interested in Banach space geometry characterizations of quasi-Cohen sets. For example, it turns out that they are exactly the subsets E of the dual of an abelian compact group G such that the canonical injection C ( G ) / C E c ( G ) L ² E ( G ) is a 2-summing operator. This easily yields an extension of a result due to S. Kwapień and A. Pełczyński. We also investigate some properties of translation invariant quotients of L¹ which are isomorphic to subspaces of L¹.