Fine and quasi connectedness in nonlinear potential theory

David R. Adams; John L. Lewis

Annales de l'institut Fourier (1985)

  • Volume: 35, Issue: 1, page 57-73
  • ISSN: 0373-0956

Abstract

top
If B α , p denotes the Bessel capacity of subsets of Euclidean n -space, α > 0 , 1 < p < , naturally associated with the space of Bessel potentials of L p -functions, then our principal result is the estimate: for 1 < α p n , there is a constant C = C ( α , p , n ) such that for any set E min { B α , p ( E Q ) , B α , p ( E c Q ) } C · B α , p ( Q f E ) for all open cubes Q in n -space. Here f E is the boundary of the E in the ( α , p ) -fine topology i.e. the smallest topology on c -space that makes the associated ( α , p ) -linear potentials continuous there. As a consequence, we deduce that for α p > 1 , open connected sets are connected in the ( α , p ) -quasi topology (i.e. the topology generated by the set function B α , p in the sense of Fuglede), and the ( α , p ) -finely open ( α , p ) -finely connected sets are arcwise connected. Our methods rely on the Kellog-Choquet properties of the capacities B α , p and aspects of geometric measure theory. The classical Newtonian case corresponds to the case α = 1 , p = 2 and n = 3 .

How to cite

top

Adams, David R., and Lewis, John L.. "Fine and quasi connectedness in nonlinear potential theory." Annales de l'institut Fourier 35.1 (1985): 57-73. <http://eudml.org/doc/74668>.

@article{Adams1985,
abstract = {If $B_\{\alpha ,p\}$ denotes the Bessel capacity of subsets of Euclidean $n$-space, $\alpha &gt;0$, $1&lt; p&lt; \infty $, naturally associated with the space of Bessel potentials of $L^p$-functions, then our principal result is the estimate: for $1&lt; \alpha p\le n$, there is a constant $C = C(\alpha ,p,n)$ such that for any set $E$\begin\{\} \min \lbrace B\_\{\alpha ,p\}(E\cap Q),B\_\{\alpha ,p\}(E^ c\cap Q)\rbrace \le C\cdot B\_\{\alpha ,p\}(Q\cap \partial \_ fE) \end\{\}for all open cubes $Q$ in $n$-space. Here $\partial _f E$ is the boundary of the $E$ in the $(\alpha ,p)$-fine topology i.e. the smallest topology on $c$-space that makes the associated $(\alpha ,p)$-linear potentials continuous there. As a consequence, we deduce that for $\alpha p&gt;1$, open connected sets are connected in the $(\alpha ,p)$-quasi topology (i.e. the topology generated by the set function $B_\{\alpha ,p\}$ in the sense of Fuglede), and the $(\alpha ,p)$-finely open $(\alpha ,p)$-finely connected sets are arcwise connected. Our methods rely on the Kellog-Choquet properties of the capacities $B_\{\alpha ,p\}$ and aspects of geometric measure theory. The classical Newtonian case corresponds to the case $\alpha =1$, $p=2$ and $n=3$.},
author = {Adams, David R., Lewis, John L.},
journal = {Annales de l'institut Fourier},
keywords = {nonlinear potential theory; fine topologies; quasi topologies; Bessel capacities; method of balayage},
language = {eng},
number = {1},
pages = {57-73},
publisher = {Association des Annales de l'Institut Fourier},
title = {Fine and quasi connectedness in nonlinear potential theory},
url = {http://eudml.org/doc/74668},
volume = {35},
year = {1985},
}

TY - JOUR
AU - Adams, David R.
AU - Lewis, John L.
TI - Fine and quasi connectedness in nonlinear potential theory
JO - Annales de l'institut Fourier
PY - 1985
PB - Association des Annales de l'Institut Fourier
VL - 35
IS - 1
SP - 57
EP - 73
AB - If $B_{\alpha ,p}$ denotes the Bessel capacity of subsets of Euclidean $n$-space, $\alpha &gt;0$, $1&lt; p&lt; \infty $, naturally associated with the space of Bessel potentials of $L^p$-functions, then our principal result is the estimate: for $1&lt; \alpha p\le n$, there is a constant $C = C(\alpha ,p,n)$ such that for any set $E$\begin{} \min \lbrace B_{\alpha ,p}(E\cap Q),B_{\alpha ,p}(E^ c\cap Q)\rbrace \le C\cdot B_{\alpha ,p}(Q\cap \partial _ fE) \end{}for all open cubes $Q$ in $n$-space. Here $\partial _f E$ is the boundary of the $E$ in the $(\alpha ,p)$-fine topology i.e. the smallest topology on $c$-space that makes the associated $(\alpha ,p)$-linear potentials continuous there. As a consequence, we deduce that for $\alpha p&gt;1$, open connected sets are connected in the $(\alpha ,p)$-quasi topology (i.e. the topology generated by the set function $B_{\alpha ,p}$ in the sense of Fuglede), and the $(\alpha ,p)$-finely open $(\alpha ,p)$-finely connected sets are arcwise connected. Our methods rely on the Kellog-Choquet properties of the capacities $B_{\alpha ,p}$ and aspects of geometric measure theory. The classical Newtonian case corresponds to the case $\alpha =1$, $p=2$ and $n=3$.
LA - eng
KW - nonlinear potential theory; fine topologies; quasi topologies; Bessel capacities; method of balayage
UR - http://eudml.org/doc/74668
ER -

References

top
  1. [1] D.R. ADAMS, Traces of potentials. II., Ind. U. Math. J., 22 (1973), 907-918. Zbl0265.46039MR47 #2337
  2. [2] D.R. ADAMS, Lectures on Lp-potential theory, Umeå Univ. Reports, no. 2 (1981). 
  3. [3] D.R. ADAMS and L.I. HEDBERG, Inclusion relations among fine topologies in non-linear potential theory, Ind. U. Math. J., 33 (1984), 117-126. Zbl0545.31011MR85c:31011
  4. [4] D.R. ADAMS, and N.G. MEYERS, Thinness and Wiener criteria for non-linear potentials, Ind. U. Math. J., 22 (1972), 169-197. Zbl0244.31012MR47 #5272
  5. [5] M. BRELOT, On topologies and boundaries in potential theory, Lecture Notes in Math. 175, Springer-Verlag. Zbl0277.31002MR43 #7654
  6. [6] B. DAVIS and J.L. LEWIS, Paths for subharmonic functions, Proc. London Math. Soc., 48 (1984), 401-427. Zbl0541.31001MR85m:31002
  7. [7] B. FUGLEDE, Connexion en topologie fine et balayage des mesures, Ann. Inst. Fourier, 21-3 (1971), 227-244. Zbl0208.13802MR49 #9241
  8. [8] B. FUGLEDE, The quasi topology associated with a countably subadditive set function, Ann. Inst. Fourier, 21-1 (1971), 123-169. Zbl0197.19401MR44 #391
  9. [9] C. FERNSTROM, On the instability of capacity, Ark. Mat., 15 (1971), 241-252. Zbl0372.31003
  10. [10] H. FEDERER, Geometric Measure Theory, Springer-Verlag, 1969. Zbl0176.00801MR41 #1976
  11. [11] C. GOFFMAN and D. WATERMAN, Approximately continuous transformations, Proc. Amer. Math. Soc., 12 (1961), 116-121. Zbl0096.17103MR22 #11082
  12. [12] L.I. HEDBERG, Non-linear potentials and approximation in the mean by analytic functions, Math. Z., 129 (1972), 299-319. Zbl0236.31010MR48 #6430
  13. [13] L.I. HEDBERG and T. WOLFF, Thin sets in non-linear potential theory, Ann. Inst. Fourier, 33-4 (1983), 161-187. Zbl0508.31008MR85f:31015
  14. [14] T. LYONS, Finely holomorphic functions, J. Func. Anal., 37 (1980), 1-18. Zbl0459.46038MR82d:31011a
  15. [15] V. MAZ'YA and V. HAVIN, Non-linear potential theory, Russian Math. Surveys, 27 (1972), 71-148. Zbl0269.31004
  16. [16] N.G. MEYERS, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26 (1970), 255-292. Zbl0242.31006MR43 #3474
  17. [17] N.G. MEYERS, Continuity properties of potentials, Duke Math. J., 42 (1975), 157-166. Zbl0334.31004MR51 #3477
  18. [18] N.G. MEYERS, Continuity of Bessel potentials, Israel J. Math., 11 (1972), 271-283. Zbl0256.31009MR46 #374
  19. [19] J. RIDDER, Uber approximativ statige Funktionen von zwei (und mehreren) Veranderlichen, Fund. Math., 13 (1927), 201-209. Zbl55.0145.01JFM55.0145.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.